ALGORITHMS FOR WHITE-BOX OBFUSCATION
USING RANDOMIZED
SUBCIRCUIT SELECTION AND REPLACEMENT

THESIS

Kenneth E. Norman, Major, USAF

AFIT/GCS/ENG /08-17

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCFE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCS/ENG /08-17

ALGORITHMS FOR WHITE-BOX OBFUSCATION
USING RANDOMIZED
SUBCIRCUIT SELECTION AND REPLACEMENT

THESIS

Presented to the Faculty
Department of Electrical and Computer Engineering
Graduate School of Engineering and Management
Air Force Institute of Technology
Air University
Air Education and Training Command
In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

Kenneth E. Norman, B.E.E.; M.S.Eng.Mgt.
Major, USAF

27 March 2008

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ENG /08-17

ALGORITHMS FOR WHITE-BOX OBFUSCATION
USING RANDOMIZED
SUBCIRCUIT SELECTION AND REPLACEMENT

Kenneth E. Norman, B.E.E., M.S.Eng.Mgt.

Major, USAF
Approved:
/signed/ 27 Feb 2008
Lt Col J. Todd McDonald, Ph.D. (Chairman) Date
/signed/ 27 Feb 2008
Dr. Yong C. Kim (Member) Date
/signed/ 27 Feb 2008

Lt Col Stuart H. Kurkowski, Ph.D. (Member) Date

AFIT/GCS/ENG /08-17

Abstract

Software protection remains an active research area with the goal of preventing
adversarial software exploitation such as reverse engineering, tampering, and piracy.
Heuristic obfuscation techniques lack strong theoretical underpinnings while current
theoretical research highlights the impossibility of creating general, efficient, and in-
formation theoretically secure obfuscators. In this research, we consider a bridge
between these two worlds by examining obfuscators based on the Random Program
Model (RPM). Such a model envisions the use of program encryption techniques
which change the black-box (semantic) and white-box (structural) representations of

underlying programs.

In this thesis we explore the possibilities for white-box transformation. Under an
RPM formulation, if an adversary cannot distinguish an original program from either
its obfuscated version (whose black-box behavior has been strategically altered) or
a randomly generated program of comparable size, then the white-box intent of the
original program has been sufficiently protected. One proposed method of creating
such random indistinguishability is by choosing (at random) a program from a size-

bounded set of all semantically equivalent possibilities.

Since full enumeration of reasonably sized programs is not possible, in this
work we focus on obfuscators which introduce random white-box structural variation
based on iterative selection and replacement. We design and develop an obfuscation
framework for programmatic logic expressed as combinatorial Boolean circuits and
compare six unique approaches for sub-circuit selection. We analyze the relative
behavior of random and guided-random sub-circuit selection algorithms while showing

their utility in producing random white-box structural variation.

v

Acknowledgements

To my wife and son: Thank you for your love and support. My success is
equally yours, and for your sacrifices, I owe you more than I can ever repay. 1 love

you both very much.

Professionally, I owe a debt of gratitude to my thesis advisor, Lt Col Todd
McDonald, and my research partner, Capt Moses James. As an electrical engineer in
a computer science program, I know I taxed their patience with my many questions.

Thank you.

Kenneth E. Norman

Table of Contents

Page

Abstract iv
Acknowledgements v
List of Figures viii
List of Tables X
L. Introduction/ 1
1.1 __Problem area, 1

1.1.1 Motivating scenario 1

1.1.2 Context, 2

1.2 Research objectives 4

11 Literature Review 5
2.1 What is obfuscation? 5

2.1.1 Preliminary definitions 5

2.1.2 Classifications of obfuscation 5

2.1.3 _Theoretical definitions 6

2.1.3.1 _ Virtual Black Box Obfuscation 7

2.1.3.2 Indistinguishability Obfuscation 8

2.1.3.3 _ Best-Possible Obfuscation 9

2.1.4 Practical applications 9

2.2 Shortfalls of current theoretical workl 10

2.3 Random Program Security Model 11

2.3.1 Program encryption 12

2.3.2 Intent protection, .. 14

[1I. Methodology 15
3.1 Notation'. 15

3.2 Assumptions 15

3.2.1 Programs represented as circuits 15

3.2.1.1 Combinational circuits 16

3.2.1.2 Directed acyclic multi-graphs 18

3.2.2 Iterative randomization' 21

3.2.3 Circuit library exists 21

3.3 Obfuscation toolkit/ 23

3.3.1 CORGI: the circuit randomizer 23

vi

Page

3.3.1.1 Development environment| 23

3.3.1.2 Subcircuit selection and replacement| . . 24

3.3.2 CXL: the circuit library 25

3.4 Empirical Approach 26

3.4.1 Keyconcepts L. 26

3.4.2 Properties of obfuscated circuits 28

3.4.3 White-box obfuscation algorithms 30

IV. Results 32
4.1 Overview 32

4.2 Limitations o Lo 33

4.2.1 Smart strategies 33

4.2.2 Introduced cycles 34

4.3 Analysis of subcircuit selection algorithms 35

4.3.1 Common functions 36

4.3.2 RandomSingleGate 36

4.3.3 RandomTwoGates 38

4.3.4 RandomlLevelTwoGates| 45

4.3.5 FixedLevelTwoGatesl. 47

4.3.6 LargestLevelTwoGates 49

4.3.7 OutputLevelTwoGates| 50

4.4 Runtime performance analysis 52

V. Conclusions 67
5.1 Contributions L 67

5.2 Futureworkl 68

Appendix A. CORGI software 70
A.1 CORGI architecture 70

A.1.1 Functionality] 70

A1.1.1 JGraphT 70

A.2 Non-selection algorithms| 70

A.3 Selection algorithm behavior 74

A.4 Selection algorithm results 78

A.4.1 C17 with all algorithms 78

A.4.2 (C880 with OutputLevelTwoGates 78

Bibliography|o 84
Vita . . . o 86
Indexi Index-1

vil

Figure

1.1
2.1
2.2
2.3
3.1
3.2
3.3
3.4
3.9
3.6
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

List of Figures

Program Encryption
The Random Program Model
RPM obfuscation L.
Black box obfuscated program
The Random Program Model
I[SCAS Benchmark Circuit C17
Graph examples
[terative randomization
Circuit hierarchy example
Example histogram 0.
Improper subcircuit selection creates cycles
Introduced control flow in ISCAS C17
Diffusion of replacements in ISCAS C17,
How a replacement subcircuit creates a new control flow
Runtime data for R1IGon C17
Runtime data for R1Gon C880
Runtime data for R2Gon C17
Runtime data for R2G on C880
Runtime data for RL2G on C17/
Runtime data for RL2G on C880
Runtime data for FL2G on C17/
Runtime data for FL2G on C880
Runtime data for LL2G on C17/
Runtime data for LL2G on C880

Runtime data for 0L2G on C17

viil

13
13
17
18
19
22
28
29
35
42
43
44
95
56
57
o8
99
60
61
62
63
64
65

Figure Page

4.16 Runtime data for 0OL2G on C880 66
Al CORGI UML class diagram 71
A2 Behavior data for all six selection algorithms 75
A3 Chart of behavior data: circuit height| 76
A4 Chart of behavior data: circuit width 7
A5 Sample results of R1G and OL2G algorithms 79
A.6 Sample results of R2G and FL2G algorithms 80
A7 Sample results of RL2G and LL2G algorithms. 81
A8 Sample result 1 of OL2G applied to C880/ 81
A.9 Sample result 2 of OL2G applied to C880 82
A.10 Sample result 3 of OL2G applied to C880/ 83

X

List of Tables

Table Page
3.1 Notation for the Random Program Model 16
3.2 Features and benefits of JGraph™| 24
3.3 Candidate circuit properties 29
3.4 Candidate subcircuit selection algorithms 30
4.1 Summary of runtime datao oL 53

ALGORITHMS FOR WHITE-BOX OBFUSCATION
USING RANDOMIZED

SUBCIRCUIT SELECTION AND REPLACEMENT

I. Introduction

Across the Department of Defense, it is increasingly difficult to find a weapon
systems which does not rely upon software to perform its intended function.
The United States Air Force in particular is reliant on software across every facet of its
mission: air, space, and cyberspace. The ubiquity of software-based systems, and the
interconnectedness of such systems, demands we protect them from our adversaries’
prying eyes. In many cases, physical security is sufficient to thwart anyone who
seeks to gain access to our systems. When physical security fails to protect our
critical software, we must turn to alternate means. One such alternative is software

obfuscation.
1.1 Problem area

Software obfuscation is not a new concept, but neither is it a well-defined dis-
cipline in practice. The concept of software obfuscation is in many ways the un-
raveling of sound development principles. The objective in software engineering is
to produce systems which are defect-free, modular, maintainable, and extensible. A
well-engineered system will function as efficiently as possible, and perform the job the
user expects, in the manner he expects it. The objective in software obfuscation is to
produce highly coupled, difficult-to-understand, complex systems which, nevertheless,
perform the job the user expects, in the manner he expects it (though perhaps with

less efficiency by comparison).

1.1.1 Motivating scenario. In early 2001, the world watched as the US

and China found themselves at odds after what became known as the Hainan Island

incident. In brief, a US EP-3 reconnaissance plane and a Chinese Shenyang J-8
collided, and the EP-3 was forced to make an emergency landing on Hainan Island

off the south coast of China. According to a 2 April 2001 UPI press release [11],

“It}he EP-3 could not have landed in a better place for China or a worse
one for U.S. military intelligence. Hainan island is host to one of China’s
largest electronic signals intelligence complexes and is manned by experts
who can glean critical information on the aircraft’s capabilities if they gain
access to the Navy’s EP-3” ... Pentagon sources said.

The crew was held hostage for 12 days before being released. The plane, how-
ever, remained on Hainan Island for a total of 94 days, during which time China had
unfettered access to the equipment on board. If the EP-3 crew was unable to entirely
destroy all information storage devices (and the software they contain) before they
landed, then the Chinese had ample opportunity to learn about US collection methods
and targets of interest during the time the plane was in their control. Even if their
examination would have taken more than 94 days, it would have been easy enough to
copy the code (from undamaged equipment) and analyze it after they returned the

aircraft to US custody.

1.1.2 Context. This research augments earlier work initiated by Lt Col
Todd McDonald for his doctorate degree. In his dissertation, McDonald described
software obfuscation as protecting program intent [12]. The concept of intent protec-
tion stands in contrast to traditional definitions of obfuscation, all of which require
that a program’s functionality remain unchanged (without regards to some acceptable
degradation of time and/or space efficiency). Instead, McDonald takes inspiration
from the field of cryptography and likens intent protection to data encryption. The
idea is to transform a program in two ways—structurally and functionally. If func-
tionality (that is, input/output behavior) must change, then it must also be possible
to recover the original behavior (see Figure 1.1). McDonald further requires that an

intent protected program be indistinguishable from any other program, selected ran-

Transformation
Pky=r, P’

Program
P/

Recovery
y=ry'k"

Figure 1.1: Program encryption under the Random Program Model

domly, which has a similar number of inputs, outputs, and is of similar size. This he

calls the Random Program Model (RPM).

The difficult question is how to devise a random selection schema. Clearly, for
any but the most basic of programs, software can be written in almost limitless ways
to accomplish the same function. If the set is impossible (or at least infeasible) to

create, an alternate means of “selection” is required.

Rather than attempt to enumerate entire sets of programs, then select a re-
placement in toto, we consider an alternate approach of iterative randomization. This
process obfuscates a program by changing the structure of only a small portion of the

program per iteration, but many iterations produce a randomized program.

For this nascent research, we narrow our focus to combinational Boolean cir-
cuits. This simplifies the problem domain by avoiding non-terminating programs and
program state (memory). Additionally, circuits can be modeled using constructs from

the mathematical discipline of graph theory.

1.2 Research objectives

We seek to accomplish two objectives with this research.

1. Develop a software architecture for developing and testing random selection

schema for obfuscating a circuit’s structure.

2. Develop an initial set of selection algorithms and characterize their behavior

with regards to white-box obfuscation.

The first objective above is a means to an end. In other words, to develop
and analyze selection algorithms, we need an architecture which will import, export,
and manipulate combinational Boolean circuits. No complete application is available
to perform the operations we seek to employ, so we developed a software package
(CORGIY) to fill the void. Although CORGI is all new, it integrates an existing Java
library (JGraphT) to represent the circuits as directed acyclic graphs.

For the second objective, we devised candidate algorithms which demonstrate
the concept of random selection and replacement. The algorithms each produce an
obfuscated version of an original circuit. Each circuit produced in this way is a
randomly “selected,” semantically equivalent version of the original, with the selection

occurring as a sequence of steps rather than a single-step selection from a large set.

Although this research is based on a new obfuscation paradigm, the next chapter
explores the current theoretical understanding of obfuscation and how it relates to

our current work.

LCORGI stands for Circuit Obfuscation via Randomization of Graphs Iteratively, and is dis-
cussed in more detail in [Section 3.3.1

II. Literature Review

everal key papers have been published which provide theoretical bases for why
Sobfuscation is both impossible and, indeed, possible. Practical applications of
these theories, however, do not appear in the literature. As such, one approach,
the Random Program Security Model, proposes that practical obfuscation is indeed
possible and that a program’s intent can be protected even if the adversary has access
to the obfuscated version of the program. The Random Program Security Model is
fundamentally an analog to data encryption, but applied to programs rather than

data.

2.1 What is obfuscation?

2.1.1 Preliminary definitions. Before delving into the finer details of ob-
fuscation, it is instructive to understand how the word obfuscation is used in several

contexts. In generic speech, to obfuscate means to “make obscure” or “confuse” [13].

As applies to computing, to obfuscate means “to alter code while preserving its
behavior but conceal its structure and intent” [19]. Alternately, obfuscation is “any
efficient semantic-preserving transformation of computer programs aimed at bringing
a program into such a form, which impedes the understanding of its algorithm and
data structures or prevents the extracting of some valuable information from the
plaintext of a program” [18]. These two definitions provide the context for our review

of current theory and techniques for program obfuscation.

2.1.2 Classifications of obfuscation. Program development and execution
involves several steps, and program obfuscation can be applied at one or more of these
steps. Fundamentally, there are three classifications of program obfuscation: layout,
data, and control [3]. Layout obfuscation involves such techniques as scrambling
identifier names and removing layout formatting. Both of these techniques operate

on the source code, and do nothing to alter control flow of the program.

Data obfuscation is also primarily focused on altering the source code. Tech-
niques include (a) storage and encoding transformations, which alter the way data
is encoded or manipulated (b) aggregation transformations, which operate on data
structures, and (c) ordering transformations, which change the order of variables and
methods (within classes) and parameters (within methods). To some extent, these
techniques can have an impact on control flow within a program, but it is not the
primary intent. Like layout obfuscation, many of the specific transformations do not

change control flow (although some introduce new control mechanisms).

The final classification is control obfuscation, and its techniques include (a) con-
trol aggregation transformations, which break up computations that logically belong
together or merge computations that do not, (b) control ordering transformations,
which randomize the order in which computations are carried out, and (c) control
computation transformations, which insert new (redundant or dead) code, or make
algorithmic changes to the source application. Control obfuscation techniques, as de-
scribed in [3], are not strictly limited to source code, which means it has more generic

applicability (e.g., assembly language and machine code).

Among the three broad categories described above, general program (circuit)
obfuscation must account for control flow. This becomes clear as we look at additional

definitions of obfuscation.

2.1.8 Theoretical definitions. The first formalized theoretical definition of
program (or circuit) obfuscation was introduced by Barak et al. in [1]. This was a
watershed publication because it formally proved that universal obfuscators do not
exist. It also had the effect of spawning alternate theoretically-based definitions of
obfuscation in several publications which followed. We will look at several of these

definitions here.

2.1.3.1 Virtual Black Box Obfuscation. “Informally, an obfuscator O
is an (efficient, probabilistic) compiler that takes as input a program P (or circuit C')!
and produces a new program O(P) that has the same functionality as P yet is un-
intelligible in some sense” [1]. In lay terms, virtual black box (VBB) obfuscation
can be thought of as some transformation to a program which completely hides all
information about the program except input/output (i.e., black box) behavior, even
though the obfuscated program is itself observable. In that sense, the obfuscated ver-
sion provides virtually equivalent information as could be obtained with only black
box access to the program.

Although informal, the definition above makes no distinction of what constitutes

bRENN14

a program. No mention is made of “source code,” “assembly language,” or “machine
code” anywhere in the paper (save one quote in a footnote). Thus, while there are
clear differences between the three levels of a program, their fundamental nature is
the same. Indeed, their equivalence is evidenced by the fact that programs can be
viewed as boolean (specifically, combinational) logic circuits, and the Barak paper
uses the terms program and circuit almost interchangeably. This is not to imply that
obfuscated source code will necessarily yield object code that is obfuscated to the

same degree (however measured). This remains an open question which, in part, will

be addressed by this thesis.

Barak et al. formally define a (circuit) obfuscator as having these three proper-

ties:

1. Functionality property: For every circuit C', O(C') describes a circuit that com-

putes the same function as C'.

2. Polynomial slowdown property: There is a polynomial p such that for every

circuit C, |O(C)| < p(|C]). This property may apply to size, run time, or both.

'Since this concept applies equally to programs and circuits, and since this thesis will specifically
explore obfuscation of circuits, we will limit further discussion to circuit obfuscation. Therefore,
substituting C' for P does not alter the definition.

3. “Virtual black box (VBB)” property: For any probabilistic polynomialtime Tur-
ing machine (PPT) A, there is a PPT S and a negligible function « such that

for all circuits C,

[Pr[A(O(C)) = 1] = Pr[s€ (1) = 1] < a(|C]) (2.1)

The obfuscator O is efficient if it runs in polynomial time.

From this definition, Barak, et al. prove that no universal obfuscator exists.
The basis of their proof is to show that, for any given obfuscator, there exists a family
of circuits which cannot be obfuscated. “However, it does not mean that there is no
method of making circuits ‘unintelligible’ in some meaningful and precise sense” [1].
To be clear, the impossibility result still allows for a given obfuscator O to be able to
protect some (though not all) families of circuits C. From this, Barak et al. offer a

weaker notion of obfuscation: indistinguishability obfuscation.

2.1.3.2 Indistinguishability Obfuscation. An indistinguishability ob-
fuscator is defined in the same way as a circuit obfuscator, except that the “wvirtual

black box” property is replaced with the following:

o Indistinguishability property: For any PPT A, there is a negligible function «
such that for any two circuits C7, Co which compute the same function and are

of the same size k,

[PrlA(O(CY))] = PrA(O(Cy))]| < a(k) (2.2)

Observe that the indistinguishability property compares the obfuscations of two
different circuits, unlike the VBB property, which compares an obfuscated circuit to
a simulator which has only black box access to the original circuit. By weakening the
VBB definition in this way, it is provable that obfuscation (however inefficient) is not

impossible.

2.1.3.8 Best-Possible Obfuscation. Goldwasser and Rothblum define
an obfuscator as “a compiler that transforms any program (which we will view. . .as a
boolean circuit) into an obfuscated program (also a circuit) that has the same input-
output functionality as the original program, but is unintelligible” [6]. It is clear
that this is the same definition found in [1], but it is nevertheless included because of
the parenthetical comment that programs can be viewed as circuits. This concept is

central to the research presented herein.

2.1.4 Practical applications. Obfuscation software, of varying sophistica-
tion, is widely available from both commercial vendors and open source developers.
Among commercial products, there are several well-known titles. PreEmptive Solu-
tions [16] produces two popular tools: Dotfuscator (for .NET) and DashO (for Java).
Smardec [17], produces Allatori, a Java obfuscator. Yet another company, Semantic
Designs, Inc. [15] has a suite of tools collectively called Thicket™. It provides tools to
obfuscate several languages, including C, C++, C#, Java, JavaScript, Ada, and PHP.
There are, of course, other vendors which offer products that purport to obfuscate
software to some degree, but enumerating them all here is beyond the scope of this

thesis.

On the open source side, the number of projects is as plentiful as on the com-
mercial side. One in particular, ProGuard Java Optimizer and Obfuscator is one of

the most popular projects on SourceForge.net.?

It is not surprising that these companies and open source developers reveal lit-
tle about the inner workings of their obfuscation techniques, except to describe the
results of applying a particular approach (e.g., name obfuscation, flow obfuscation,
string encryption, etc.). Interestingly, however, Semantic Designs’ web site unequiv-
ocally states, “Warning: obfuscators do not stop reverse-engineering efforts by really

determined opponents.” This statement is an acknowledgment of the theoretical work

2From its home page, “SourceForge.net is the world’s largest Open Source software development
web site.” As of 16 Jan 2008, ProGuard was ranked 291 out of 166,996 projects listed.

of Barak et al. described above. Nevertheless, practical obfuscators are not in short

supply, despite this limitation, which begs the question: “Why not?”

2.2 Shortfalls of current theoretical work

To begin to answer the question of why practical software obfuscators are even
available, much less trusted, one must further ask, “what makes them useful despite
the impossibility results asserted—proved’—Dby the theoreticians?” The answer is at

least two-fold.

First, commercial and open source obfuscation tools are not typically employed,
for the most part, to hide the purpose of the target software, but rather to hide the
manner in which that purpose is achieved. For example, Microsoft may choose to
obfuscate all or part of the source code for its spreadsheet program, Excel™. The ob-
fuscated version would not hide the fact that the application is a spreadsheet. Rather,
it would hide some portion of the code to prevent competitors from learning how part
of the code is implemented, thus protecting Microsoft’s competitive advantage in the
marketplace. In this way, the obfuscation would be useful, even if though it necessarily

fails the VBB paradigm of perfectly secure obfuscation.

A second (perhaps more profound) reason may be that the tools do not address
obfuscation from a theoretical perspective. In light of an absence in the literature that
correlates theoretical results to practical implementations, it is difficult to make this
claim definitively (i.e., “absence of proof is not proof of absence”). It is nonetheless
intriguing that developers do not relate the strength of their obfuscation schema to

results predicted by the theoretical models.

From a VBB perspective, no obfuscators of any ilk should be useful or benefi-
cial. Although the VBB standard is not achievable in a general, efficient, universal
sense, some amount of obfuscation, as pertains to some as-yet undefined metric of
obfuscation, may be desirable. This is certainly the case with existing obfuscators,

even if not explicitly stated or understood by the developers, because all such tools

10

both exist and fail the VBB test. Therefore, the VBB standard is not viable as a

measure of practical obfuscation.

The other two theoretical results mentioned before—indistinguishability obfus-
cation and best-possible obfuscation—are similar. They both relate obfuscation to
some property of the program, and use that to compare obfuscation results to each
other (whereas VBB relates obfuscation to a black box version of a program). This
distinction is subtle, but it opens the door to finding useful obfuscators even if they
fail VBB scrutiny. Unfortunately, the underpinning theory behind indistinguishability
obfuscation and best-possible obfuscation do not offer suggestions on what property
or properties of a program should be the basis of comparison when deciding if an

obfuscator yields indistinguishable results, or the best-possible level of obfuscation.

The research supporting this thesis was conducted to directly address what
properties of a program might (or might not) be useful measures of obfuscation,
and to provide a framework for empirically testing the efficacy of those properties.
In other words, we seek to produce a “tangible” correlation to the theoretical work
which has preceded this research. This objective is an outgrowth of the doctorate
research conducted by Lt Col Todd McDonald. In his dissertation, he suggests a new
paradigm of program obfuscation, the Random Program Security Model [12].

2.3 Random Program Security Model

Recall from [1] the theoretical benchmark definition of an obfuscator—the VBB
paradigm—requires that three properties hold: functionality, polynomial slowdown,
and the VBB property. Under the Random Program Security Model (or simply
Random Program Model, RPM), McDonald replaces two of the three properties,
functionality and VBB [12]. Only the polynomial slowdown property is retained.

For the functionality property, McDonald postulates instead that program ob-
fuscation should apply both black-box and white-box obfuscation techniques. The

principle is that neither approach on its own is sufficient to obfuscate a program.

11

P —> O Io——> p!

A P' e 6,

Indistinguishable(?)

V

P

R

Program family
[Inputs/Outputs/Size/(2]

P,ed
Figure 2.1: ~ The Random Program Model (Program domain)

When combined, however, they act synergistically to overcome the inherent weak-

nesses of each.

For the VBB property, McDonald reasons that if an obfuscated program is
indistinguishable from another program randomly-selected from the same family of
programs (based on inputs, outputs, and size of the program), then the intent of the

original program is protected.

The RPM is similar to, and derived from, data cryptography. RPM models
black-box obfuscation after data encryption, and white-box obfuscation is analogous
to comparing cryptographic data ciphers to random bit strings. Figure 2.1 graphically
depicts the RPM. The obfuscator function, O, uses both black-box and white-box
transforms, as shown in [Figure 2.2. These are described below in Sections 2.3.1

and 2.3.2.

2.3.1 Program encryption. Figure 2.3 illustrates the concept of black box
obfuscation using program encryption. For an input x to program P, the result,

P(z) is the unobfuscated output of P. Intermediate result P(z) becomes the input

12

Figure 2.2:

Black-box
transform

P”
>

White-box
transform

box transforms

RPM obfuscation combines both black-box and white-

k
4 N\
. , P P(x) B E(P(x),k) S
‘“-Hq___/’—d_ ‘H—__——”/ 1)”
- J
Figure 2.3: A black box obfuscation P” of program P. P and P” are

not semantically equivalent because P” includes a program, E, which
encrypts the output of P.

of another component, F, which encrypts P(x) based on some key k. The output
E(P(z),k) of E is the overall output of P”. Since P(z) # E(P(x),k) (i.e., P(x) #

P"(x)) for a given input x, program P” is thus said to be a black-box obfuscated

version of P.

Program encryption might be sufficient to protect a program if an adversary
never obtains white-box access to the obfuscated program, P”. If the adversary did
have white-box access, the demarcation between P and E would be discernible, and

P would be revealed independent of E. Thus, RPM adds white-box protection to

program encryption to achieve overall protection of the program’s intent.

13

2.3.2 Intent protection. As previously stated, perfect, efficient, universal
VBB obfuscators do not exist. If an adversary has access to an obfuscated, seman-
tically equivalent program, the adversary will eventually be able to understand the
intent of the original program. McDonald theorizes that program encryption can be
augmented in such a way as to prevent an adversary from being able to isolate P
from E in an encrypted program P”. The goal is to hide the fact that there is a
semantics-altering component E. If this is possible, then even if the adversary is able
to (eventually) predict the output of P”, such output will be meaningless with respect

to P(z), and program intent will remain protected.

McDonald proposes that if P” (which is not semantically equivalent to P) is
replaced with a randomly chosen—or produced—program P’ (which is semantically

equivalent to P”), then P is intent protected if the following hold:

e P’ issuch that the adversary cannot distinguish between the functional program

P and the composite encryption program F

e P’ is indistinguishable from a random program selected from the set of all pro-

grams the same size as P’

14

III. Methodology

he Random Program Model posits that an intent-protected program is indistin-
T guishable from any other program with the same number of inputs and outputs,
and of comparable size. This thesis specifically considers the white-box obfuscation
component of the RPM. In this initial research, a program is modeled as a combi-
national boolean circuit. The circuit is white-box obfuscated by iteratively replacing
random subcircuits with randomly-chosen, semantically-equivalent replacement sub-
circuits. Several algorithms are considered for selecting the subcircuits, and as well

as candidate metrics with which to quantify the level of obfuscation achieved.

3.1 Notation

Since this research follows earlier work conducted by Lt Col Todd McDonald,
we use his notation for the sake of consistency. Table 3.1 provides the notation used

in the discussion which follows.

3.2 Assumptions

The current experimental environment relies on some simplifying assumptions,

which are discussed here.

3.2.1 Programs represented as circuits. Software functionality, at its most
fundamental level, can be represented as a sequence of Boolean expressions. For typ-
ical programs, which include loops (for, while, etc.), sequential boolean circuits map
most directly to the program structure. In general, sequential (cyclic, in graph theory
parlance) circuits can be converted to combinational (acyclic) circuits. Edwards [4]
offers an algorithm which performs this transformation, but warns it is inefficient for
anything but trivially small circuits (his algorithm ran for 51 seconds when oper-
ating on a 281-gate circuit). Despite potential intractability when converting large
sequential circuits, we choose combinational logic over sequential logic because of its

comparative simplicity.

15

Table 3.1: Notation used in describing the Random Program Model

Variable | Meaning

C A combinational Boolean circuit
C! Original circuit C' after 7 iterations of randomization

', cl Original circuit C' after n-iteration randomization is finished
Q circuit basis.) is a set of Boolean functions such that

Q) C {AND, NAND, OR, NOR, XOR, XNOR, NOT}

Cx.y.s.q | the class of a circuit, indicating inputs (X)), outputs (Y),
size (S = maximum number of gates), and basis ({2)

0, 0x.y.s-q | circuit family, i.e., the set containing all circuits C'x.y_s.q

e family of circuits semantically equivalent to C' (d¢ C 0)

The Random Program Model applies not only to the program domain, but to
the circuit domain as well. Figure 2.1]is given again (with only a notational change)

in Figure 3.1 to show the parallel between the two.

3.2.1.1 Combinational circuits. ~ Combinational circuits have no state,
whereas sequential circuits are temporal, which is to say they have memory and feed-
back loops (cycles). Since sequential circuits can be decomposed into combinational
components, it is sufficient at the outset of this research to forgo the former in favor
of the latter. As an aside, combinational circuits sidestep the issue of non-terminating

programs—another complication of sequential circuits.

Our decision to use combinational circuits is supported by [9] which points
out in Chapter IV that a very simple grammar is all that is needed to compute
everything that can be computed by large languages like C' and Java. In particular,
the grammar, in Backus Naur form, is shown in [Equation 3.1 where B represents

any Boolean expression and F represents any integer expression. It is because of this

16

Indistinguishable(?)

& . _
Circuit family
[Inputs/Outputs/Size/(2]

Figure 3.1: ~ The Random Program Model (Circuit domain)

underlying simplicity that any software can be mapped to combinational logic form.

B ::=true|false|(!B)|(B&B)|(B || B)|(E < E) (3.1)

An obvious benefit of choosing combinational logic is that it is easy to un-
derstand. As demonstrated in [Equation 3.1 above, only three logic functions are
necessary: NOT (!), AND (&), and OR (]|). There are other commonly used logic
functions (namely NAND, NOR, XOR, and XNOR), but these can be represented
using various combinations of NOT, AND, and OR.

Combinational logic circuits are used across a broad spectrum of applications,
within both the hardware and software domains. At the 1985 International Sym-
posium of Circuits and Systems (ISCAS), the IEEE introduced a set of benchmark
circuits, which are collectively referred to as ISCAS-85 benchmark circuits. [8] They
are particularly useful to our purpose, even though they were initially targeted at the
hardware community. A list of these circuits can be found at [2]. The smallest of

these circuits, C17, is shown in Figure 3.2l

17

Figure 3.2: ISCAS Benchmark Circuit C17

3.2.1.2 Directed acyclic multi-graphs. In order to manipulate circuits,
they must be in a format suitable for that purpose. For this research, the discipline of
graph theory provides a suitable application domain. Namely, we represent circuits
as directed acyclic multi-graphs. We turn to Gross and Yellen [7] for a brief
refresher on graph theory terminology to help describe the rationale for choosing

graphs to represent circuits (reference Figure 3.3).

graph: A graph G = (V, E) is a mathematical structure consisting of two finite sets
V and E. The elements of V are called vertices (or nodes), and the elements of
E are called edges. Each edge has a set of one or two vertices associated to it,

which are called endpoints. [Example: All graphs in Figure 3.3.]

The authors correctly allow for edges with only one endpoint, which “is an edge that
joins a single endpoint to itself.” However, such a construct in a circuit would make it
sequential, not combinational. For our purposes, we only consider edges with exactly

two distinct vertices. See the definition for cycle below.

directed edge: A directed edge is an edge, one of whose endpoints is designated as
the tail, and whose other endpoint is designated as the head. An edge is said

to be directed from its tail to its head.

directed graph: A directed graph (or digraph) is a graph each of whose edges is
directed. [Example: Figures 3.3(b), (d), and (f).]

18

(d) (e) (f)

Figure 3.3: Example graphs.

(a) An undirected graph with no cycles.

(b) A directed graph with no cycles.

(¢) An undirected graph with one cycle (1 —-2—-3—-4—1and 1 —4 —
3-2-1).

(d) A directed graph with one cycle (1 -2 — 3 — 4 — 1 only).

(e) An undirected multi-graph with one cycle.

(f) A directed acyclic multi-graph.

19

O

We must limit the graphs we use to directed graphs because in a combinational
circuit, a connection between gates is always from the output of one gate to an input

of another gate.

cycle: A cycle is a nontrivial closed path.!

acyclic graph: An acyclic graph is a graph that has no cycles. [Ezample: Fig-
ures [3.3(a), (b), and (f).]

Combinational circuits do not have any feedback loops or memory, as do sequential

circuits. Therefore, only an acyclic graph can represent a combinational circuit.

multi-edge: A multi-edge is a collection of two or more edges having identical end-

points. The edge multiplicity is the number of edges within the multi-edge.

multi-graph: A multi-graph is a graph that may contain multi-edges. [Ezxample:
Figures 3.3(e) and (f).]
In a combinational circuit, it is permissible for the output of one gate to be connected

to more than one input of another single gate. The analogous construct in graph

theory is a multi-graph.

directed acyclic graph: A directed acyclic graph (DAG) is a graph that is at the
same time a directed graph and an acyclic graph. It may or may not be a

multi-graph. [Ezample: Figures 3.3(b) and (f).]

For our purposes, we implicitly accept DAGs as also being multi-graphs. In other
words, DAG and directed acyclic multi-graph carry the same meaning, thus Fig-

ures 13.3(b) and [3.3(f) are both DAGs.

LA path does not repeat any vertex (except possibly the initial /final vertex) or edge. Nontrivial
means the path includes more than one vertex. Closed means the initial vertex is the same as the
final vertex.

20

3.2.2 Iterative randomization. The RPM requires that an intent-protected
circuit, C’, be indistinguishable from a randomly selected circuit, C'r. An interesting
aspect of the RPM is that the comparison itself is not influenced by the choice of orig-
inal circuit, C'. Consequently, if the obfuscator O does not encrypt (i.e., semantically
transform) a circuit, the indistinguishability comparison can still be performed. This
fact allows us to segregate the white-box component of O from its black-box compo-

nent as we explore randomization methods for white-box obfuscation of circuits.

To perform white-box obfuscation, we consider the process of subcircuit se-
lection and replacement. Two reasons drive us to this choice. First, to randomly
select a white-box replacement of C' would require enumeration of all circuits in d¢.
As circuit size increases, ¢ becomes prohibitively large, and the obfuscator suffers
greater-than-polynomial slowdown. Second, the separate steps of subcircuit selection
and subcircuit replacement offer opportunities to inject randomness into the white-

box obfuscation process.

Section 3.4.3 describes selection and replacement in greater detail, but we in-
troduce here the basic of the concept (reference [Figure 3.4). Given a circuit C' which
is to be white-box obfuscated, select a subcircuit, Cy,;. Retrieve a randomly chosen
circuit Cy,, from a library of circuits which contains a set of all circuits semanti-
cally equivalent to Cy,, (the assumption that such a library exists will be discussed
in Section 3.2.3). Finally, remove Cy,, from C and insert C,., in its place. As long
as Cgyp and C, are semantically equivalent (and the order of inputs and outputs is

preserved), then semantic equivalence exists for C, all C!, and C,.

3.2.3 Circuit library exists. A library of replacement circuits must exist
in order for the process of iterative randomization to be possible. However, in Sec-
tion 3.2.2 we said that enumerating all possible replacements for C' would violate the

polynomial slowdown condition of RPM. We overcome this apparent contradiction

21

C on—— > ! o—— > C'

(7 IS

Subcircuit Subcircuit
Selection Replacement
('sub (rep
Subcircuit
Library

(a)
T ™ 2 T — T
C C]/ C2’ C’ C”’

1 n

(b)

Figure 3.4: Two representations of iterative white-box randomiza-
tion.

(a) White-box obfuscation of circuit C' by iteratively replacing ran-
domly selected subcircuits (Cy,p) with a semantically equivalent sub-
circuit (Cyp) chosen randomly from a circuit library. C'is the unobfus-
cated circuit, C/ is C' after the i" iteration of replacement, and C’, is
C' after an n-iteration obfuscation is complete.

(b) Depicts the sequential iterations of subcircuit selection and replace-
ment.

22

by developing® a library whose contents are limited to only small circuits, typically
on the order of 5 or fewer gates. In this way, all semantically equivalent circuits in
a particular family (i.e., all C' € ¢) can be enumerated. Therefore, in the iterative
replacement process, a given C), can truly be selected from among all size-bounded

circuits semantically equivalent to Cl.

3.3 Obfuscation toolkit

As this research is empirically based, a software tool was developed to perform
the white-box circuit obfuscation portion of the RPM. Although the RPM calls for
both black-box (program encryption) and white-box (randomization) techniques, they
are performed independently from one another. This allows us to develop software

which only performs the white-box function. The tool has two major components,

CORGI and CXL.

3.3.1 CORGI: the circuit randomizer. CORGI, which stands for Clircuit
Obfuscation via Randomization of Graphs Iteratively, was developed to empirically
analyze the RPM. Its development was a major benefit of this research. The inner
workings of the software are described in greater detail in Appendix A. Here, we

briefly discuss the main features of CORGI.

3.8.1.1 Development environment. CORGI is coded entirely in Java.
Several factors influenced this choice. First, there is a strong emphasis on object-
oriented design (OOD) at the Air Force Institute of Technology (AFIT), and Java
is the de facto language of choice for the academic environment. Second, given the
nature of the problem domain (i.e., circuits), OOD is a logical design choice. The
third factor is based on our choice of application domain (i.e., to represent circuits as

graphs), which allowed us to incorporate JGraphT into the development.

2The circuit library used in this research is a product of concurrent research conducted by Capt
Moses James. His research focuses on circuit randomization as a set selection problem.

23

Table 3.2: The most notable features and benefits JGraphT con-
tributed to the development of CORGI.

Feature Benefit to CORGI development

Graph package Model CORGI circuits as graphs. In particular,
JGraphT’s graph package included classes for all the
types of graphs described in Section 3.2.1.2.

Subgraph class Manipulate subgraphs without modifying the base
graph. This is a critical component of the subcircuit
selection and replacement process.

Exporter classes Export circuits to standard formats used by vari-
ous graph software packages (e.g., yGraph, GraphVis,
prefuse, etc.). Allows user to render circuits visually.

Algorithms package | Contains classes for standard algorithms used in
graph theory. In particular, the CycleDetector class
is a critical part of CORGI because it enforces the
acyclic nature of DAGs.

JGraphT is an open source Java graph library [14]. Its free availability as an
open source project shortened the time to develop CORGI by at least several weeks—
possibly much more. JGraphT provides the means to easily generate graphs and
apply to them many of the common graph theory techniques. It is the crux of what
makes CORGI work. JGraphT not only provides the ability to model the underlying
graph of a circuit, it also has methods and services which make circuit manipulation

and analysis possible. Table 3.2/ shows the key features and benefits of JGraphT.

Despite the graph basis for circuit manipulation—as implemented by way of the
JGraphT library—CORGI completely elides from the user any references to graphs or

graph behavior. Thus, CORGI is effectively a translation between the two domains.

3.3.1.2 Subcircuit selection and replacement. Subcircuit selection and
replacement is the principle function CORGI performs. From the user perspective, it
is a single action, but as already described, this function is iterative. We describe in
more detail here the mechanics of how CORGI carries out one iteration of the process

(ref. Figure 3.1)).

24

CORGI does not actually select subcircuits. Instead, it selects a subset of the
circuit’s gates based on a selection strategy chosen by the user.® This subset of the
circuit’s gates corresponds to a subset of vertices in the underlying graph, by which
a vertez-induced subgraph (or simply subgraph) is derived. CORGI then copies the
subgraph (leaving the base graph unchanged) and uses it to construct a separate

subcircuit representative of the gates selected.

Next, CORGI uses the new subcircuit’s truth table, along with other user inputs,
to request a replacement from the circuit library (CXL). CXL selects a random,
semantically equivalent, subcircuit replacement (i.e., its truth table is the same). The
original subcircuit is removed from the circuit, and the replacement subcircuit is

inserted in its place.

3.3.2 CXL: the circuit library. CXL is a component of CORGI which
contains a library of circuits. In a sense, CXL is really a library of sets of circuits.

Each set is a circuit family 6 where C'is characterized by a particular class Cx_y.s.

(ref. [Table 3.1).

Because of the various equivalence relationships in Boolean logic, |d¢| rapidly
increases exponentially with even small increases in S and/or |€2|. For practical rea-
sons, we choose S < 3, although we do allow 2 C {AND, NAND, OR, NOR, XOR,
XNOR, NOT} (i.e., | < 7).

From a user perspective, CXL is not a separate component from CORGI. Indeed,
CXL is accessed by CORGI via an interface, which is called from within the iterative
function of subcircuit selection and replacement. The user provides parameters which
are used by the interface, but the call itself is not controlled by the user. Because of
this, we consider CXL to be an integrated component of CORGI, and this perspective

is implicit in any further references to CORGI unless otherwise stated.

See [10] for more detailed information on the behavior of CXL.

3The initial implementation of CORGI limits selection to only one or two gates, primarily for
performance reasons, but also due to limitations imposed by the circuit library.

25

3.4 Empirical Approach

This research is predicated on the notion that we need empirical data to be able
to demonstrate whether practical obfuscation might be possible in light of theoretic
impossibility results. Perhaps there exist imperfect obfuscators that protect circuits

to a useful, measurable degree. Inherent in the preceding conjecture are two questions:

e What properties of circuits are indicators of useful, measurable circuit

protection?
e What methods of obfuscation produce such properties in circuits?

Since our standard of useful is the RPM, we are really asking what properties
of circuits are indistinguishable between an obfuscated circuit, C’, and a randomly
selected (generated) circuit, Cg. If we know which properties relate to indistinguisha-
bility under the RPM, our intuition is we should be able to easily find algorithms which
produce those properties in C’. On the other hand, if we know that a particular ob-
fuscator will produce a C’ which meets the RPM definition of indistinguishability, we

can deduce which properties are indicators of well-obfuscated circuits.

In reality, we do not know a priori the answer to either of the two questions
above. Our approach, therefore, is to work the problem incrementally to see where
the results converge. We briefly consider several candidate properties with which
to measure circuit obfuscation under RPM. Then we propose several algorithms for
performing subcircuit selection as part of the iterative randomization process. These
algorithms are applied to a circuit, C'; and then the resulting white-box obfuscated
circuit, ', is examined for their effect on obfuscation under RPM. Next, we define

some key concepts used in the discussion which follows.

3.4.1 Key concepts. First, a circuit property, as we shall use the term, is
a descriptor of a single circuit. This is an important distinction since the white-
box circuit obfuscation process we employ is iterative (ref. [Figure 3.4), creating

/

many intermediate circuits C;" before finishing with C,,’ (C,, is the same as C’ in

26

Figure 3.1). These intermediate circuits provide us the means to measure how a given
property changes throughout the iterative process, but each C;" will have its own set

of properties independent of any other circuit.

Second, since combinational circuits are modeled as DAGs, we look initially to
graph theory for properties of graphs which may be candidate measures of circuit
obfuscation. This choice leads us to also use graph terminology to describe some of
the properties. When this occurs, equivalent terminology—if it exists—is included

parenthetically.

Third, our use of the term path is limited to only those paths which begin at
a circuit input and end at a circuit output. The intention is to describe control flow

through a circuit.

Fourth, DAGs are by their nature hierarchical, thus combinational Boolean
circuits are, too. A circuit’s gate hierarchy is dictated by the predecessor or successor
relationships of the various gates in the circuit. By our convention, if a gate precedes
another gate in some path through the circuit, then the preceding gate is at a higher
level. Equivalently, if a gate succeeds another gate along some path through the
circuit, then the succeeding gate is at a lower level. It is possible that a particular
gate could be assigned to any one of several levels, but our convention is to assign the

gate to the lowest level that preserves the hierarchy of the circuit.

Figure 3.5 demonstrates the concept of gate hierarchy. Note that gate B is at
level 2, not level 1, as is gate C. This is because the longest path from inputs of gate B
to the output of gate D is length 2. Similarly, gate A could have been assigned to
a new level 3, but the addition of the extra level breaks the convention that gates

should be assigned to the lowest level that preserves the hierarchy of the circuit.

Finally, certain proposed circuit properties are frequency distributions, repre-
sented graphically as histograms. An example might be the number of unique paths

that transit each gate. In Figure 3.5, for example, gate A has two unique paths:

27

(a) (b)

Figure 3.5: A simple example of circuit hierarchy.

(a) A simple circuit (X =4,Y =1, S =4, Q = {NAND}) without
hierarchical levels.

(b) The same circuit with lowest hierarchy level assigned to each gate.

ig-A-C-D and i;-A-C-D. Similarly, gate B has two, gate C has four, and gate D has

six. The associated histogram is shown in Figure 3.6,

3.4.2 Properties of obfuscated circuits. A property of a circuit may be a
single value (e.g., average path length), or a distribution of values (see Figure 3.6). In
case of the latter, the property will be identified as such. We propose several circuit
properties as candidate measures of circuit obfuscation, without consideration of the

efficacy of each property (see [Table 3.3.)

To be clear, the properties listed in Table 3.3 serve two purposes. First, they are
objects of the proposed algorithms (Section 3.4.3/below). Second, they are collectively
a leaping-off point for future research on which circuit properties are strong indicators

of effective obfuscation.

28

= 2
Q
c
@
=
o
o
w1
0 T
0 1 2 3 4 5 6
Unique paths
Figure 3.6: A simple example of a histogram of a circuit property.

The chart represents the frequency of occurrence of gates having a par-
ticular number of unique paths passing through them. In this example
circuit, two gates have two unique paths (gates A and B), one gate has
four unique paths (gate C), and one gate has six unique paths (gate D).

Table 3.3:
obfuscation.

A set of candidate circuit properties for measuring circuit

Circuit-level

Gate-level

Number of vertices at each hierarchical
level [distribution]

Number of paths through each gate
[distribution]

Set of input/output pairs as deter-
mined by paths through the circuit

Number of unique input/output pairs
represented by paths through each gate
[distribution]

Number of vertex (gate) types (|Q2|)

Number of successors of each gate (i.e.,
gate fanout) [distribution]

Number of each vertex type (e.g., AND,
OR, etc.) [distribution)]

Number of predecessors of each gate
(i.e., gate fan-in) [distribution]

29

Table 3.4: A set of candidate subcircuit selection algorithms used to
iteratively white-box obfuscate a circuit. Algorithm names are derived
from the file name of the Java class which implements the algorithm in

CORGI.
Selection Algorithm Description
RandomSingleGate Selects a single gate at random
RandomTwoGates Selects two gates at random

RandomLevelTwoGates Selects a hierarchical level at random, and limits re-
placement to two gates selected at random from that
level (£1 level)

FixedLevelTwoGates Same as RandomLevelTwoGates except the hierarchi-
cal level is specified

LargestLevelTwoGates | Same as FixedLevelTwoGates except the hierarchical
level is the one containing the most gates

OutputLevelTwoGates Same as FixedLevelTwoGates except the hierarchical
level is 0 (level 0 contains all the output gates)

3.4.83 White-box obfuscation algorithms. CORGI was designed to use mul-
tiple, interchangeable subcircuit selection algorithms. Recall that under the RPM,
an obfuscated circuit C’, which is semantically equivalent to circuit C, is indistin-
guishable from a random circuit C'r. We would like to be able to select C’ from a
completely enumerated dcr, but for large |C|, the size of d¢ is prohibitively large to
enumerate all circuits in the set. This limitation forces us to choose another method of

random “selection” of C': iterative randomized subcircuit selection and replacement.

The process of obfuscating a large circuit by iteratively randomizing small sub-
circuits provides opportunities and introduces challenges as compared to direct selec-
tion from 6. An advantage of the process is that a subcircuit selection algorithm can
be chosen such that it optimizes a particular obfuscation metric. A disadvantage, due
to the fact that the process is a metaheuristic, may be that a particular sequence of

iterations will converge on a final C’" with a suboptimal value for the target property.

30

Table 3.4 lists a candidate set of randomization algorithms developed for this
research with a brief description of each. In Chapter IV, we analyze these algorithms

and how they were derived.

31

IV. Results

ORGI is an architecture for obfuscating combinational Boolean circuits via iter-
C ative subcircuit selection and replacement. Six strategies for subcircuit selection
are implemented in CORGI as modular algorithms. When executed, these algorithms
transform a circuit C' into a randomized (i.e., white-box obfuscated) but semantically
equal circuit C’. The nature of the transformation is different for each algorithm.
Also, the design of certain CORGI components degrades CORGI performance (run-

time) when some selection algorithms are employed.

4.1 Overview

To perform white-box obfuscation under the RPM on circuit C', we would ideally
like to enumerate all circuits in d¢, then select one at random as the semantically
equivalent replacement circuit C’. Such enumeration is infeasible for large circuits,
which means a replacement circuit cannot be directly selected at random. Instead, it
must be built, but still yield a random C” € dc. The process of iterative subcircuit
selection and replacement described in Section 3.2.2 provides two ways for introducing

randomness into the process.

1. Random selection: Select a subcircuit Cy,, C C' at random.
2. Random replacement: Select a replacement circuit Cl., € d¢,., at random.

There may also be some intermediate circuit C; for which non-random selection

and replacement are preferred. Here, also, there are two such smart choices.

1. Smart selection: Only select subcircuits which have a particular property. If
the subset of allowable selections contains more than one subcircuit, then one

may be selected at random or based on another property.

2. Smart replacement: Similar to smart selection, only select replacement circuits
from the library which have a particular property. If the subset of allowable se-
lections contains more than one subcircuit, then one may be selected at random

or based on another property.

32

4.2 Limatations

Our research exposed certain limitations on the development of subcircuit se-
lection and replacement algorithms. Smart strategies often impinged upon temporal
or spatial efficiency, and the problem domain (i.e., combinational Boolean circuits)
reduced the randomness of random selection strategies as we seek to avoid creating

sequential circuits.

4.2.1 Smart strategies. There are multiple ways to make smart subcircuit
selections. Some examples include choosing only subcircuits with a particular input
size (Xqup), output size (Yiu), circuit size (Sgup), basis (Qsu), and/or truth table.
Selection can also be made based on particular subsets of the circuit’s gates. For
example, select only subcircuits which have gates in a particular hierarchical level in
the circuit. Other smart selection strategies require searching the underlying graph
for isomorphic subgraphs, which is an NP-complete problem [5]. These can all pose
intractability problems for our iterative randomization process when we have large

circuit sizes, which limits the efficiency of the search algorithm.

Consider a smart selection strategy which is based on subgraph isomorphism.
Since the search is NP-complete, and the search space can be quite large (circuits
with thousands, perhaps millions of gates), the strategy becomes too computationally

intensive to be efficient, as required by the RPM.

Two of the six algorithms (RandomSingleGate and RandomTwoGates) use a
purely random selection strategy which are discussed in Sections 4.3.2 and 4.3.3l
The other four algorithms (RandomLevelTwoGates, FixedLevelTwoGates,
LargestLevelTwoGates, and OutputLevelTwoGates) use a blend of smart and ran-
dom selection, as is described in Sections 4.3.4-4.3.7. None of the latter four algo-

rithms use NP-complete selection strategies.

As for smart replacement, CXL currently has no means to employ such a strat-
egy. The problem is more a limit on space than on time. Specifically, if all replacement

circuits are stored with sufficient metadata, then finding a particular replacement is

33

basically a simple lookup in a database. However, as the size bound of candidate
replacement circuits increases, the size of the library increases exponentially, thus

limiting the set from which replacements can be selected.

4.2.2 Introduced cycles. — The choice of combinational Boolean circuits places
a particular limitation on which subcircuits may be selected for replacement, as stated

in Axiom [1.

Axiom 1. In order to maintain the combinational structure of circuit C, the set of
gates G(Csyp) in a selected subcircuit Cy,p, must not contain any pair of gates (G, G;)
such that (WLOG):

(a) G; precedes G; along some directed path in C, and

(b) the longest directed G;-G; path in C is > 2.

The results of improperly selecting Cy,;, is shown in Figure 4.1. Figure 4.1(a)
shows a 4-input, l-output, 4-gate circuit. In Figure 4.1(b), a 3-input, 2-output, 2-
gate subcircuit Cy,, is selected for replacement. However, Cj,;, contains a pair of
gates, B and D, which violate Axiom [1. Figure 4.1(c) shows that a cycle is created
if Cgyp is replaced with any replacement circuit C,.,. The problem occurs because
gate C receives an output from Cl,, but also provides an input to Cy,,, thus creating
a cycle. If Uy, is improperly selected, there exists no C,., such that a cycle is not

created.

As a result of this limitation, the manner of subcircuit selection in CORGI
requires a sequential selection of gates for those algorithms which select multi-gate
subcircuits. There are differences in how this is performed for each algorithm, which
are discussed below. The important point here is that, once the set of gates is selected,
the subcircuit is defined (induced) by the set of selected gates, as well as all connections
(“wires”) leading into or out of those gates. It is not necessary that selected gates be

connected directly to each other in C'.

34

Figure 4.1: An example of an improper subcircuit selection and how
it will create a cycle after replacement.

(a) A circuit before subcircuit selection.

(b) Subcircuit Cj,;, is selected. It is not a valid selection since gate B
is a predecessor of gate D and the longest path from B to D is > 2.
(c) A cycle is created after replacing an improperly selected subcircuit,
regardless of what replacement C,., is used.

4.3 Analysis of subcircuit selection algorithms

For this research, six subcircuit selection algorithms were developed. All algo-
rithms adhere to a standard selection interface in CORGI, which does not actually
select a subcircuit Cy,, directly from a circuit CJ. Instead, the interface requires each
algorithm to return a set of gates G. CORGI then uses GG, together with JGraphT’s
DirectedSubgraph class to create the subcircuit C,;, induced by the selected gates in
set G. Thus, each algorithm returns a set of gates, not a subcircuit. The sections that

follow describe the manner of selection and the “behavior” each algorithm exhibits.

The development of these algorithms was itself an iterative process. As each new
algorithm was developed and tested, the results would suggest alternate strategies for
selection. Therefore, the algorithms are presented below in roughly the same order in

which they were developed.

35

4.8.1 Common functions. The overall process of randomization is also
presented in Appendix Al (Algorithm 7). For the sake of brevity here, we defer to
Appendix A [Section A.2 for the details of two functions used by the six selection
algorithms discussed below: SelectRandomGate (Algorithm 8) and RejectGates (Al-
gorithm 9). It is sufficient to know that SelectRandomGate randomly selects a gate
from a set of gates, and RejectGates populates a set of gates which should not be

part of the input to SelectRandomGate.

A third function, EstablishGateHierarchy, is used only by the so-called level
algorithms (those for which selection is based on a circuit’s hierarchical level—all
have “Level” in their name). The details of EstablishGateHierarchy are presented
in [Appendix Al (Algorithm [10), but its basic functionality is to assign each gate to
the lowest allowable level in the circuit’s hierarchy. The details of why this function
is required will be presented in Section 4.3.4, where we introduce the first of the level

algorithms, RandomLevelTwoGates.

4.3.2 RandomSingleGate. RandomSingleGate was the first selection algo-
rithm developed for CORGI. As the name implies, all subcircuit selections Cj,; are

of the class Cx, ,-1-1-0,,, Where

sub

Qg € {AND, NAND, OR, NOR, XOR, XNOR}
Xsub 2 2

Yo = Ssub = |qub| =1

Since all Cy,;, contain only one gate, any gate can be selected from C! and
replaced without creating cycles in C7, | (as long as C is combinational). The selection

procedure is simple, as shown in Algorithm 1.

RandomSingleGate was developed initially as a simple algorithm by which
CORGI functionality could be tested. The function of removing a subcircuit from

a circuit, then replacing it with a different subcircuit is a non-trivial activity. Se-

36

Algorithm 1 RandomSingleGate(C!)

Gsup — D {set of gates (1 in this case) to induce Cyyp}
G(C!) « set of all gates in C!

gr < call SelectRandomGate(G(C!))

Goub — Goup U {gr}

return G,

gUl Wy

lecting a single-gate subcircuit for replacement, while simple to do, provides multiple
dimensions by which to test the process of iterative randomization. When the sub-
circuit is replaced, gate properties such as type (NAND, NOR, etc.), fan-in (number
of adjacent predecessors), fanout (number of adjacent successors), and whether the

selected gate is a circuit output, must all be accounted for.

RandomSingleGate is a purely random (as opposed to smart) selection process.
No knowledge of the target circuit is needed other than the set of gates in the circuit.

The iterative process cannot be guided in any way.

There are three results produced by RandomSingleGate. First, no new external
control flows are introduced in the circuit; second, the size S of C7, ;| is never smaller
than CJ; and third, the circuit becomes very “tall” (¢ o« n, where ¢{ = number of

hierarchical levels, and n = number of replacement iterations).

The first result is contingent on how we use the term control flow. If we have
access to the structure of a circuit, then every unique path through a circuit is a control
flow. If, however, we only have black-box access to a circuit, then no distinction can be
made between unique paths which share a common source (input) and sink (output).
We will refer to the former as internal control flow and the latter as external control
flow. RandomSingleGate will never introduce new external control flows because all
subcircuit inputs connect to a single subcircuit output. However, RandomSingleGate
will always introduce new internal control flows. The only way RandomSingleGate
does not produce new internal control flows is the trivial case where the selected single-

gate subcircuit is replaced with itself. All other semantically equivalent replacements

37

have more than one gate, with connections between them; thus new internal control

flows are always introduced.

The second result is a function of the replacement subcircuits C,, returned by
CXL. In order for a replacement C,., of a single gate subcircuit Cy,, to change CY,
Cyep must have more than one gate. The reason for this is there is no non-trivial
single-gate equivalence between any pair of gates (g;, g;) in Q@ = {AND, NAND, OR,
NOR, XOR, XNOR}.

The third result is a natural consequence of the first two. A subcircuit Cjy
comprised of a single Boolean logic gate has only one hierarchical level (¢ = 1). All
nontrivial replacements C,, of Cy,p, have at least two gates. If C,, has n gates, then
it can have 1 < ¢ < n hierarchical levels. If ¢ > 2, then C 41 could “grow”—relative
to C/—by as much as ¢ — 1 levels (although it may not grow at all). The rate of
growth over many iterations is a function of which gates are selected and the average

number of levels in each Ci, selected from CXL.

Reference [Figure A.5(b) for a sample result of applying this algorithm to IS-
CAS benchmark circuit C17. As we see from the data presented in Section A.3|

RandomSingleGate produces the tallest C' on average among all the circuits.

4.3.3 RandomTwoGates. RandomTwoGates is meant to be a two-gate version
of RandomSingleGate. All subcircuit selections Cy,; are of the class Cx,,, v, ,-2-0..,

where

Qs C {AND, NAND, OR, NOR, XOR, XNOR}
Xsub = 2

Yoy =1 or Yyup = 2

Seub = 2

|qub| = 1 or |qub| = 2

38

The selection of Cyy is accomplished by sequentially selecting the two gates.
The first gate, g1, is selected entirely randomly, in exactly the same fashion as the
gate g, was selected by the RandomSingleGate algorithm. The second gate, go, must
be selected more carefully, however, in order not to introduce cycles after replacement.
Specifically, go can only be selected from a specific subset of gates in C! that remains

after g; was selected (ref. Section 4.2.2). The procedure is shown in Algorithm 2.

Algorithm 2 RandomTwoGates(C})

Geana — D {set of candidate gates to select from randomly}

Geand — Geana U G(C!) {set of all gates in C!}

g1 < call SelectRandomGate(G una)

Geand + Geana — {91} {g1 cannot also be go}

Geand “— Geana — {call RejectGates(g;, true)} {remove predecessors of ¢; }
Geand “— Geana — {call RejectGates(g;, false)} {remove successors of ¢g; }
g2 < call SelectRandomGate(G una)

Gsup — @ {set of gates to induce Cyyp}

Gsub — Gsub U {gla 92}
return G,

,_.
<

There were two motivations for developing RandomTwoGates. We wanted to
continue testing the capabilities of CORGI to determine if the selection/replacement
process will work for C), with more than one output. We also had the intuition
that a replacement for a multi-input, multi-output subcircuit would introduce new

external control flows.

RandomTwoGates is (almost) purely a random selection algorithm. The only
caveat is that not every pair of gates (g1,¢92) C G(C}) are “legal” selections since
some pairs introduce cycles when replaced. Despite the fact that the candidates for
selecting g» is a subset of G(C})—{ g1}, RandomTwoGates is in no way a smart selection

algorithm.

There were three results from analyzing the behavior of RandomTwoGates. First,
we confirmed our intuition that new external control flows can indeed be intro-
duced. Second, similar to RandomSingleGate, the circuit becomes very tall, with

few gates in any single hierarchical level. Third, RandomTwoGates runs slower than

39

RandomSingleGate because CXL must select from a larger store of semantically equiv-
alent replacements as the number of inputs increases. We will discuss each result

separately.

By far the most profound discovery was that new external (and internal) con-
trol flows can be introduced (but it does not always occur). The reason it can is
because the subcircuit selected can be (and often is) comprised of two gates, g¢;
and g, which are not adjacent to each other (i.e., g; is not a predecessor of gs).
If g1 and ¢ are adjacent, then the resulting subcircuit Cl,;, will have only one output,

and RandomTwoGates will behave like RandomSingleGate for that single iteration.

The probability P that RandomTwoGates creates a new control flow during any

given replacement iteration ¢ is described by

P(i) (1 - XT;@Y) X Pe X Pa (4.1)

where i, n., X, Y, p., and p, are described below:

i A particular iteration of the algorithm
Ne Number of external control flows in C] before selection
X, Y Number of inputs and outputs, respectively, of C!

De Probability that CXL returns a replacement subcircuit C,., with
more control flows than Cy,;, (ref. Figure 4.4] for an example)

Da Probability that RandomTwoGates will choose two gates adjacent
to one another (i.e., the output of one gate feeds an input of the
other—ref. Section 4.3.2))

The foregoing can best be demonstrated with an actual circuit. Figure 3.2
depicts ISCAS benchmark C17, which was the target circuit for an experiment to
demonstrate how selection algorithm RandomTwoGates can introduce new external
control flows. A series of 20-iteration trials were performed until the final circuit C”
had more external control flows than the original C' (i.e., ISCAS benchmark C17).
After only seven trials, a C’ was found with a path from input 1 to output 23, which
was not present in C'. CORGI has the capability to output the results of each iteration

40

of randomization, and by looking back through the data, we found that the seventh
iteration produced the desired effect. Figure 4.2 shows the transition from Cf to C%

(iteration #7 in this example).

The second result for RandomTwoGates—the fact that it also makes circuits grow
very tall—was somewhat unexpected. In retrospect, it probably should not have been
since the same relationship between the hierarchical levels of Cy,, and C,., described
in Section 4.3.2 exists for RandomTwoGates. As circuit size increases, the probability
that Cy, will have two hierarchical levels (¢ = 2) decreases since the number of
adjacent gate pairs in C! is exponentially smaller than the number of all gate pairs
in C/. The rate at which a circuit obfuscated with RandomTwoGates grows taller
is, on average, slightly slower than for RandomSingleGate since there is a non-zero
probability that a one-output Cl,;, is selected during a given iteration of subcircuit

selection and replacement.

The third result has to do with a non-intuitive property of circuit families. The
size of a given family ¢ is a function of several factors, including input quantity,
output quantity, basis, and gate quantity. But it is also a function of the signature
(truth table) of elements of 0. Some families have circuit signatures such that there
are relatively few (sometimes zero) elements. Others families may have thousands of
elements. When a subcircuit Cy,;, is selected such that |d| is large, the selection of a re-
placement C,., takes longer. RandomTwoGates selects Cy,p, such that oc_,, (from which
CXL must choose a C,.,) is, on average, larger than it is when RandomSingleGate
is the selection algorithm. See [10] for more details on the relationship of a circuit’s

signature (truth table) to the size of its circuit family.

Reference Figure A.6(b) for a sample result of applying this algorithm to IS-
CAS benchmark circuit C17. Again, from the data presented in Section A.3, Random-
TwoGates produces C’ which are, on average, about half the height of circuits pro-

duced by RandomSingleGate.

41

35

38

39

32

(a) Circuit C§ with Cyyp selected (b) New circuit C% with C,., inserted

Figure 4.2: Subcircuit selection and replacement using RandomTwoGates on ISCAS
C17, which creates a new external control flow in the circuit (input 1 [Inl] to out-
put 23 [Out23)).

(a) Gates 31 and 32 (Cyyp) will be removed from C§. Note there is no control flow
from Inl to Out23.

(b) New circuit C” is created after Cy,, in circuit Cf is replaced with semantically
equivalent C,., (gates 41, 42, and 43). A new control flow now exists from Inl
to Out23 (path: In1—35—41—42—29—40—0ut23).

42

O w
Oo
OLY
O

1
@
38
39
C,

(a) Circuit C7% with Cs,p selected (b) New circuit Cg with C,., inserted

Figure 4.3: Subcircuit selection and replacement using RandomTwoGates on ISCAS
C17, which replaces a two gates, each added during different iterations.

(a) Gates 39 and 43 (Cj,p) will be removed from C%. Note that gate 39 was not in
the original circuit.

(b) New circuit C} is created after Cy,, in circuit C7 is replaced with semantically
equivalent C,., (gates 44, 45, 46, and 47). Because of the structure of the selected
replacement circuit, gates 38 and 35 are each elevated to the next higher layer in the
circuit hierarchy.

43

39 35 26

36 29
(a) Csyp from Figure 4.2(a) (b) Cyep from Figure 4.2(b)
Inputs Outputs

26 35 39 | 31/42 32/43

HH A3 EE
HH =T8T
HmHm g
HHAaSEE
S S S

(c) Truth table of Cyyp, and Chep

Figure 4.4: An example of how a replacement subcircuit C,., can
introduce a new control flow where none existed in the selected subcir-
cuit Cy,p (reference Figure 4.2)).

(a) No control flow exists between gate 35 and gate 29 in Cjyp.

(b) Subcircuit Cy, has a control flow from gate 35 to gate 29.

(c) The truth table of both circuits.

44

4.3.4 RandomLevelTwoGates. The RandomLevelTwoGates selection algo-
rithm functions the same as RandomTwoGates except that G.q.q only contains gates
which are in at most three contiguous levels of the circuit hierarchy. All subcircuit

selections Cy,;, are of the class Cx, , v, ,-2-0.,, Where

Qg € {AND, NAND, OR, NOR, XOR, XNOR}
Xsub = 2

Yo =1 or Y =2

Seup = 2

|Qsup| = 1 o1 [Qup| = 2

692 = 691 +1

The similarity between RandomLevel TwoGates and RandomTwoGates is in how it
selects the first gate, g;. In both cases, ¢ is selected entirely at random. Since gate ¢;
occupies some hierarchical level ¢y, then level ¢, is a de facto random selection.
The difference between these two algorithms is in how gate g, is selected. With
RandomLevelTwoGates, gate go must be selected from within levels ¢,,, ¢, + 1, or

1

o — 1. As we saw with RandomTwoGates, its gate go selection can be any gate that
does not introduce a cycle. Note that RandomLevelTwoGates selects two gates which
are within one level of each other. Therefore, no call to RejectGates is required since

it is impossible to introduce a cycle.

Having observed that RandomTwoGates increases the number of hierarchical lev-
els (i.e., the height) at approximately half the rate of RandomSingleGate (see [Sec-
tion A.3 for discussion), we developed RandomLevelTwoGates to see if we could further
reduce the rate of height increase relative to the number of iterations performed, yet
retain as much randomness as possible otherwise. The conjecture was that, by limit-

ing subcircuit selection to gates in a single “band” of at most three hierarchical levels,

45

Algorithm 3 RandomLevelTwoGates(C))

call EstablishGateHierarchy () {Assigns each gate to a hierarchical level}
Gcand — g
g1 < call SelectRandomGate(G(CY)) {A random gate from any level}
g4, < hierarchy level of gate g;
Geand — Geana U G({y,) {all gates in level ¢4, }
Gcand — Gcand - {gl}
if ¢;, > 0 then
Geand < Geana U G({y, — 1) {all gates one level below g, }
end if
if Egl < gMAX then
Geand < Geana U G({y, + 1) {all gates one level above g, }
. end if
. go < call SelectRandomGate(Gruna)
: Gsub — g
: Gsub — Gsub U {glu 92}
: return Gy

[S S =y Sy
S IO OIS)

[
[=2]

the propensity of a replacement circuit C,., to increase the circuit’s height should be

further mitigated.

The fact that we specifically disregard particular levels when choosing g, makes
RandomLevelTwoGates a smart selection algorithm. Gate g, is still selected randomly,
but since the subset of gates from which g, is chosen is dependent on g, we expect to
be able to better control how RandomLevelTwoGates modifies a circuit. The reason
that go is not restricted only to ¢4, is because of the nature of subcircuits C,., returned
by CXL. As previously discussed in [Section 4.3.2 (page 138), C,., can—and often
does—have more than one hierarchical level. If it occurs that C,, has the same

height as Clp, then the overall circuit C] will not grow in height during iteration i.

There were four results from analyzing the behavior of RandomLevelTwoGates.
First, we confirmed our hypothesis that RandomLevelTwoGates produces shorter cir-
cuits than either RandomSingleGate or RandomTwoGates. Second, we demonstrated
that a smart selection strategy can be employed to guide the behavior of a white-box

obfuscator to a particular end. In this case, we took our observations of how single

46

iterations of random selection strategies impacted circuit growth to develop a smart

algorithm.

The third result is the nature of the internal circuit structure. Unlike the two
random selection algorithms, RandomLevelTwoGates has connections (edges) which
span fewer hierarchical levels. This can be observed by comparing Figures [A.5(Db)
and [A.6(b). In the former image, many connections span more that half the length
of the circuit, whereas in the latter image, connections spanning more that eight
levels appear much less frequently. The implication of this finding is that level-based
algorithms could be useful if connection length is a circuit property that correlates to

the degree of obfuscation.

The fourth result has to do with algorithm efficiency. The function Establish-
GateHierarchy is a component of this (indeed, all four) level-based algorithm. It
must be invoked at the beginning of every iteration, as shown in algorithms 3, 4 | 5,
and 6] (line 1 in each). In its current implementation, EstablishGateHierarchy is
inefficient.” For C] with small size |S], this is not a problem; but as the number of
iterations increase, the circuit size also increases, and EstablishGateHierarchy slows
down the selection algorithm. Future versions of CORGI must take this performance
factor into account in order that level-based selection algorithms are efficient for large

circuits.

4.3.5 FizedLevelTwoGates. The FixedLevelTwoGates selection algorithm
functions the same as RandomLevelTwoGates except for two differences. Whereas in
RandomLevelTwoGates the target level is based on the selection of gate g;, the opposite
is true here. FixedLevelTwoGates must first have a level {r to target (user input),
and from that level, it selects gate g; (the numerical value of £z remains constant for
all iterations). In addition, FixedLevelTwoGates selects gate go only from levels ¢z or

(p+1 (not from ¢r —1). All subcircuit selections Cyy, are of the class Cx,, v, ,-2-0..

!The details of why this is the case are discussed in [Appendix A

47

where

Qg € {AND, NAND, OR, NOR, XOR, XNOR}
Keub 2 2

Yo =1 or Yy =2

Ssub = 2

|Qsup| = 1 o1 [Qp]| = 2

by, =Ly, o1 Ly, =Ly +1

Algorithm 4 FixedLevelTwoGates(C!)
call EstablishGateHierarchy ()
Gcand — g
lp « fixed level where 0 < F' < {);4x {user inputs F'}
Geand <— Geana U G((r) {all gates in level (p}
g1 < call SelectRandomGate(G una)
Gcand — Gcand - {91}
if {r < /lprax then
Geand < Geana U G(Ly, + 1)
end if
g2 < call SelectRandomGate(G una)
: Gsub —
: Gsub — Gsub U {glqu}
: return Gy,

e
w D = O

The first three algorithms developed successively improved control over cir-
cuit growth as measured by circuit height, yet they each created a wide range of
height results. In other words, over many trials, the data shows a large standard
deviation (o) for circuit height (see Figure A.2). Our motivation for developing
FixedLevelTwoGates next was to observe whether targeting a single level for subcir-
cuit selection would cause the circuit to grow wider than it did with

RandomLevelTwoGates.

There were two findings regarding FixedLevelTwoGates, one negative, and

one positive. First, it produces circuits which are (on average) both taller and

48

narrower than those produced by RandomLevelTwoGates. This is the opposite of
what we expected, but the circuits did exhibit one similarity to those produced by
RandomLevelTwoGates; namely, there are relatively few connections that span more

than 10% of the circuit’s height.

Second, however, FixedLevelTwoGates achieved more predictable behavior rel-
ative to the number of iterations performed (i.e., smaller standard deviation,). We
attribute that fact to limiting the selection of gate g to only two, rather than three,
contiguous levels in C!. This substantially limits the set of gates from which gate g;
may be selected (the previous three algorithms select gate g; at random from among
all gates in CY). As a result, this smart selection algorithm has much less randomness,
which may be the basis of the tight coupling between circuit height and number of

iterations.

4.3.6 LargestLevelTwoGates. With LargestLevelTwoGates, we combine
the variable level selection of RandomLevelTwoGates with the targeted level selection
of FixedLevelTwoGates. This algorithm is procedurally the same as FixedLevel-
TwoGates except that the selected largest (widest) level, ¢y, is calculated for every

iteration.

Algorithm 5 LargestLevelTwoGates(CY)

1: call EstablishGateHierarchy ()

2: Gegna — 9

3: by < widest (largest) level where 0 < fy, < {py4x {tiebreaker: smallest fy }
4: Geand “— Geana U G(ly) {all gates in level fy }
5: g1 < call SelectRandomGate(G eunq)

6: Gcand — Gcand - {gl}

7. if EW < g]\/[AX then

8 Geand — Geana U G(ly, + 1)

9: end if

10: go < call SelectRandomGate(G unq)

11: Goup — @

12: Gsub — Gsub U {gla 92}

—
w

: return Gy

49

Our objective in developing LargestLevelTwoGates is an algorithm that is ag-
ile enough to “chase” the largest (widest) level as C] grows. The nature of subcircuit
replacement, combined with the rigidity of predecessor relationships in a combinato-
rial Boolean circuit, causes gates to migrate to higher levels in the circuit hierarchy.
When a gate moves from one level to the next, the population of the level it origi-
nally occupied decrements by one. To combat this tendency, LargestLevelTwoGates
always selects gates from the largest level. If multiple levels are largest, choose the

lowest level among them.

Two results from LargestLevelTwoGates are clearly evident in Figure A.7(c).
First, the algorithm provides more control over circuit growth than any of the previous
selection algorithms. From the data in Section A.3 we see the average height of C’
produced by LargestLevelTwoGates is approximately 54% the average height of
C" produced by its nearest competitor, RandomLevelTwoGates. Circuits produced
using LargestLevelTwoGates are also much wider than any of the other circuits.
RandomLevelTwoGates is again the closest competition, but LargestLevelTwoGates

produces C’ more than twice as wide.

A second result is the fact that LargestLevelTwoGates can introduce external
control flows, just as we first saw with RandomTwoGates. The C’ circuit represented
in Figure A.7(c) has external control flows In1-Out23 and In7-Out22, whereas the
original circuit C' in Figure A.7(a) does not. Thus, LargestLevelTwoGates provides
a high degree of control over circuit growth, yet retains the potential to introduce

control flows.

4.3.7 OutputLevelTwoGates. The last of the six algorithms is another
variation on a theme. OQOutputLevelTwoGates is, in fact, only a special case of
FixedLevelTwoGates where the target level contains the circuit outputs. In other
words, using FixedLevelTwoGates with {r = 0 is the same as using OutputLevel-

TwoGates. Algorithm |6 shows this special case.

20

Algorithm 6 OutputLevelTwoGates(C))

call EstablishGateHierarchy ()

Gcand 7

ly < level 0 which only contains circuit output gates
Geand < Geana U G(lp) {all gates in level ¢y}
g1 < call SelectRandomGate(G una)

Gcand — Gcand - {91}

Geand “— Geana U G(£1) {all gates in level ¢;}
g2 < call SelectRandomGate(G una)

Gsub — 9

Gsub — Gsub U {gla 92}

: return Gy

—_ =
— O

OutputLevelTwoGates was developed purely out of curiosity, and it proved
to be a worthwhile endeavor. When /r > 0 in FixedLevelTwoGates, there is the
possibility that the width of ¢z can increase. Conversely, the width of a circuit’s
output level ({p) is fixed, so any replacement of a subcircuit that contains an output
gate must not increase the number of circuit outputs.? The net effect on circuit growth
is best described by way of analogy, followed by three example C’ circuits produced

by OutputLevelTwoGates.

The behavior of OutputLevelTwoGates resembles the manufacturing process of
extrusion which creates long objects of a fixed cross-sectional profile. In this case,
the cross-sectional profile is circuit width. However, unlike the random algorithms,
OutputLevelTwoGates produces circuits in which all® levels are approximately the
same width as output level ¢;. Regardless of how many outputs the circuit has, or
how many iterations are performed, the widest level will contain only a few more

gates than the output level, 4.

To see the extrusion effect, reference C” in Figure A.5(c) which has height of

93 levels and widest layer only of 4 gates. But on average, all layers are not 4

2Under the concept of black-boz refinement, adding decoy outputs—and inputs—is desireable.
This research does not address the concept, however, so we restrict ourselves to preserving circuit
input and output quantities.

3An exception to this is when, prior to iteration 1, the widest level of C' is substantially wider
than Eo.

51

gates wide; they are only 2 gates wide, which is equal to the number of outputs.
For another demonstration, we apply OutputLevelTwoGates to a different ISCAS
benchmark circuit, C880, which has 26 outputs. The results, for different numbers of
iterations, are shown in Figures 'A.8-A.10. Again, the average width of all layers is

approximately 26, which is the same as /.

From these results, we must revisit our observations for FixedLevelTwoGates.
Basically, FixedLevelTwoGates behaves the same as OutputLevelTwoGates, but the
extrusion occurs at some user-defined level. In essence, the target circuit C' will be
“split” at the chosen level ¢/ which has a particular number of gates, ng. All levels
0 through ¢ — 1 will remain unchanged and an extruded subcircuit will connect the

top and bottom of C' in the final randomized circuit C".

4.4 Runtime performance analysis

We conclude with a brief discussion on the runtime performance of the six
algorithms. This is not intended to be a rigorous examination of CORGI performance,
but instead it will provide an understanding of what factors influence run times as
well as compare the performance of each of the six selection algorithms relative to one
another. Figures!4.5-4.16 contain runtime performance data for the six algorithms as
applied to two different ISCAS BENCH circuits: C17 and ¢880. Each figure displays
representative results from two trials for each combination (i.e., selection algorithm
and circuit). In all cases, each trial is 1000 iterations. [Table 4.1/ provides a summary

of the data.

The time required for each iteration of randomization is comprised of the time
needed to perform the selection and the time required for CXL to produce a replace-
ment subcircuit. For all algorithms, the latter is independent of both the structure
of C] and the time required for CORGI to select a subcircuit from C!; however, the
runtime of CXL is dependent on whether it generates an equivalent subcircuit at
runtime, or simply selects an equivalent subcircuit from a static store. For the data

presented here, we used the runtime option. Even though that choice is more time-

52

C17 C880

Algorithm Trial 1 | Trial 2 || Trial 1 | Trial 2
RandomSingleGate 38 ms | 37 ms 44 ms | 44 ms
RandomTwoGates 441 ms | 447 ms || 476 ms | 504 ms

RandomLevelTwoGates | 290 ms | 282 ms | 430 ms | 436 ms
FixedLevelTwoGates 404 ms | 393 ms || 420 ms | 438 ms
LargestLevelTwoGates | 350 ms | 359 ms || 400 ms | 373 ms
OutputLevelTwoGates | 331 ms | 359 ms | 438 ms | 445 ms

Table 4.1: ~ Summary of runtime data for the six selection algorithms.

The data show the average per-iteration time (in milliseconds) after

1000 iterations for two trials on each of two circuits: C17 and C880.

Times are rounded to the nearest millisecond.
intensive, the average per-iteration time will remain constant over many iterations.
Therefore, by comparing the results of one selection algorithm to those of another (or

the same selection algorithm applied to different circuits), we can deduce the relative

performance characteristics of CORGI.

RandomSingleGate is the fastest of the six selection algorithms. Each subcircuit
only has one gate, thus the subcircuit only has one output. As a result, CXL can
more quickly return a replacement. The slower times for RandomSingleGate when
applied to C880 vs. C17 is because C880 initially has 437 gates to only 6 gates for
C17.

The remaining five selection algorithms are substantially slower than Random-
SingleGate primarily because selected subcircuits contain two outputs. Therefore,
the library of equivalent subcircuits in CXL is substantially larger. Since, for our
experiments, CXL generates the equivalent subcircuits at runtime, the per-iteration

times increase substantially as compared to RandomSingleGate.

RandomTwoGates is the slowest of the six selection algorithms. RandomTwoGates
is the only selection algorithm that calls RejectGates (Algorithm [9), which is a

recursive DFS.

For the four level-based selection algorithms, average run times over 1000 it-

erations are all less than times for RandomTwoGates. Whereas RandomTwoGates

23

calls RejectGates, the four level-based selection algorithms all call EstablishGate-
Hierarchy. This, too, is a DFS, but employs pruning. Pruning is a graph theory
technique for limiting the search space, and in part accounts for the relative speedup
of these four algorithms as compared to RandomTwoGates. Another factor that con-
tributes to the increased speed of these four algorithms is the frequency of selecting
single output subcircuits. Specifically, these algorithms select gates in adjacent hi-
erarchical layers, which means the second gate selected by the algorithms is more
likely to be a predecessor or successor of the first gate selected. The result of such a
selection is a one-output subcircuit, which CXL more quickly produces than it does

two-output subcircuits.

54

—forg Time So Far
——Avg time last 100

Milliseconds
™I
(3]
L=

20.0

15.0

10.0

50

0.0 T T T T T T T T T — T T T T T T T T

1 101 2M 3 401 501 601 701 801 901
Iteration
(a) Trial 1

st
,?‘NW L T

— Sy Time So Far
—— Awvg time last 100

Milliseconds
(o]
(&3]
=

20.0

15.0

10.0

50

0.0 T T T T T T T T T — T T T T T T T T

1 101 20 3 401 501 601 701 801 901
Iteration
(b) Trial 2

Figure 4.5: Sample per-iteration runtime data from applying selection algorithm
RandomSingleGate to circuit C17.

ot
ot

70.0

60.0

50.0
. e,) T e
T 400 R v v i T e
2 — Ay time so far
-]
2 .
2 30 Avg time last 100
=

200

10.0

0.0 T T T T T T T T T — T T T T T T T T

1 101 20 3 401 501 601 701 801 901
Iteration
(a) Trial 1

70.0

60.0
w e r
":400# - e e LS
8 i — Ayg time so far
-]
2 .
2 5 Awg time last 100
=

200

10.0

0.0 T T T T T T T T T — T T T T T T T T

1 101 20 3 401 501 601 701 501 901
Iteration
(b) Trial 2

Figure 4.6: Sample per-iteration runtime data from applying selection algorithm
RandomSingleGate to circuit C880.

800.00
700.00)
600.00 A/
500.00 WM‘\/"J“WJV

400.00 4 _r—“/,\rw e | = pyg Time So Far

Avgtime last 100

}
hi

300.00 w*' —= =
200.00
100.00
0.00 T T T T T T T T T T T T T T T T T T T
1 101 201 301 401 501 601 701 501 901
lterations
(a) Trial 1
800.00
T00.00

600.00 f’v/‘,

500.00 P

400.00 W =" | e Ay Time So Far
. ——Avg time last 100

300.00

Milliseconds

200.00
100.00
0.00 T T T T T T T T T — T T T T T T T T
1 101 201 301 401 501 601 701 801 901
Iteration

(b) Trial 2

Figure 4.7: Sample per-iteration runtime data from applying selection algorithm
RandomTwoGates to circuit C17.

800.0

700.0

600.0
% 500.0 - — J\-"\A/\m‘"r\"\‘_\‘M W F‘I\J‘\J
= * ot .r’j el
§ 400.0 m W B —Avg Time So Far
= -7 v ——Awg time last 100
E 3000

200.0

100.0

0.0 T T T T T T T T T T T T T T T T T T T
1 101 201 301 401 501 601 701 801 901
Iteration
(a) Trial 1

800.0

7000 M

600.0 T'
% 500.0 + /W N I——
=
S Ll_r'. W w ——Ayg Time So Far
@ 400.0)
® ——Awg time last 100
E 3000

200.0

100.0

0.0 T T T T T T T T T T T T T T T T T T T
1 101 201 301 401 501 601 701 801 901
Iteration
(b) Trial 2

Figure 4.8: Sample per-iteration runtime data from applying selection algorithm
RandomTwoGates to circuit C880.

400.0
350.0 Mw\
300.0 fru Py ||n"|r'-|.h v
2 2500 1
g 200.0 — g Ti|11e So Far
® ——Awg time last 100
E 1500
100.0
50.0
0.0 T T T T T T T T T T T T T T T T T T T
1 101 201 301 401 501 601 701 801 901
Iteration
(a) Trial 1
400.0
350.0
300.0 ALY A WL m,,/‘w
| e A
__.fu—-lul-‘""_
@ 2500 1
g 200.0 — g Ti|11e So Far
® ——Awg time last 100
E 1500
100.0
50.0
0.0 T T T T T T T T T T T T T T T T T T T
1 101 201 301 401 501 601 701 801 901
Iteration
(b) Trial 2
Figure 4.9: Sample per-iteration runtime data from applying selection algorithm

RandomLevelTwoGates to circuit C17.

700.0

600.0

500.0
5 il WM
£ 4000 -— :
2 W —Avg Time So Far
@
@ o
2 3000 Awg time last 100
=

200.0

100.0

0.0 T T T T — T T T — T T T — T T T
1 101 201 30 401 501 601 701 801 901
Iteration
(a) Trial 1

700.0

600.0

500.0 s~

e

w
-g‘_.mnn ,fJ" W“‘M‘r\. m/wa\"\v,
2) e T —Ayg Time So Far
@
@ o
2 3000 Awg time last 100
=

200.0

100.0

0.0 T T T T — T T T — T T T — T T T
1 101 201 30 401 501 601 701 801 901
Iteration
(b) Trial 2

Figure 4.10: Sample per-iteration runtime data from applying selection algorithm
RandomLevelTwoGates to circuit C880.

60

500.0

450.0 MWMW
e e

400 0 — ,

350.0 LRy
300.0

260.0 —Avg time so far
) —— Awg time last 100
200.0

150.0

Milliseconds

100.0

0.0 T T T T — T T T — T T T E— T T T
1 101 201 3 401 501 601 T 801 901

Iteration

(a) Trial 1

500.0

450.0
400.0 {V‘F‘H‘m _ NUNN'LM I')M‘\J'.\
v o

T

350.0

300.0

260.0 —Avg Time So Far
) —— Awg time last 100
200.0

150.0

Milliseconds

100.0

0.0 T T T T — T T T — T T T E— T T T
1 101 201 3 401 501 601 T 801 901

Iteration

(b) Trial 2

Figure 4.11: Sample per-iteration runtime data from applying selection algorithm
FixedLevelTwoGates to circuit C17.

61

700.0
600.0
500.0
400.0 _,/::_WM M&w@'
—n —Avg Time So Far
h_ — Awg time last 100
3000 T4
200.0
100.0
0.0
1
(a) Trial 1
600.0
- /) R AR pun
400.0 Tt 2
2 .
s —Avg Time So Far
8 300.0 ’
£ ——Awyg time last 100
=
200.0
100.0
0.0 T T T T — T T T — T T T — T T T
1 101 20 301 401 501 601 701 801 901
Iteration
(b) Trial 2

Figure 4.12: Sample per-iteration runtime data from applying selection algorithm
FixedLevelTwoGates to circuit C880.

62

500.0
450.0
400.0 -
i SN NV,
£ 300.0 e
o e
Z 2000
150.0
100.0
50.0
1 101 201 301 401 501 601 701 80 901
Iteration
(a) Trial 1
500.0
450.0 m
400.0 AL .
el T
S
Z 2000
150.0
100.0
50.0
1 101 201 301 401 501 601 701 801 901
Iteration
(b) Trial 2

Figure 4.13: Sample per-iteration runtime data from applying selection algorithm
LargestLevelTwoGates to circuit C17.

63

900.0

800.0

700.0 HH

600.0
w
E N
g 500.0 \%L o — Ay time so far
-]
é 4000 W ——— ——Awg time last 100
= W

300.0

200.0

100.0

0.0 T T T T — T T T — T T T E— T T T
1 101 201 3 401 501 601 701 801 901
Iteration
(a) Trial 1

800.0

T00.0

600.0 1
& 500.0
=
3 —fivg time so far
8 400.0 YA — — e
8 ——Awvg time last 100
= 3000

200.0

100.0

0.0 T T T T — T T T — T T T E— T T T
1 101 201 30 401 501 601 701 801 901
Iteration
(b) Trial 2

Figure 4.14: Sample per-iteration runtime data from applying selection algorithm
LargestLevelTwoGates to circuit C880.

64

450.0

400.0

350.0 ol) e M o m o [l _).Jv

: :ﬁ VR TR A AN AL A AN i

300.0 oy — . o
35
E 250.0 — Ay time so far
-]
£ 2000 ——Awg time last 100
=

150.0

100.0

50.0

0.0 T T T T T T T T T T T T T T T T T T T
1 101 201 3 401 501 601 701 801 901
Iteration
(a) Trial 1

600.0

500.0
. 2000 av
< W Mﬂrﬂ
8 300.0 M Pl =g time so far
1] Py
2) v W’ ——Avg time last 100
=

200.0

100.0

0.0 T T T T T T T T T T T T T T T T T T T
1 101 201 30 401 501 601 701 801 901
Iteration
(b) Trial 2
Figure 4.15: Sample per-iteration runtime data from applying selection algorithm

OutputLevelTwoGates to circuit C17.

65

600.0
o /WWWMM AN
m 400.0 Pay’ Lvd
=
=
§ 300.0 A1) t?me so far
2 f ——Awg time last 100
=
200.0
100.0
0.0 T T T T — T T T — T T T E— T T T
1 101 201 3 401 501 601 701 801 901
Iteration
(a) Trial 1
600.0
500.0 L
W V‘.\" o
N
w
=
5 r, — S time so far
8 300.0 :
8 I\IJ ——Awvg time last 100
=
200.0
100.0
0.0 T T T T — T T T — T T T E— T T T
1 101 201 30 401 501 601 701 801 901
Iteration
(b) Trial 2

Figure 4.16: Sample per-iteration runtime data from applying selection algorithm
OutputLevelTwoGates to circuit C880.

66

V. Conclusions

he work described in the foregoing chapters comprises only the beginning of
Ta much larger effort. Going forward, we expect a steep learning curve given
the “obstacle” of the impossibility result presented in [1]. However, this research—
combined with that which will follow—seeks to set intent protection (which alters
structure and function) apart from the common understanding of obfuscation (which
only alters structure). In this research, we focused only on the process of white-box
obfuscation, a necessary but not sufficient component of program intent protection.
We further narrowed our scope to white-box obfuscating combinational Boolean cir-
cuits. We developed an architecture for manipulating circuits, and developed an
initial set of algorithms for white-box obfuscating circuits via subcircuit selection and

replacement.

5.1 Contributions

Perhaps our biggest contribution to our area of study is CORGI, the tool upon
which this and future research is based. As with any new software, its development
was not without difficulty. However, without CORGI, the process of subcircuit selec-
tion and replacement would have been entirely manual which would have yielded little
data: calculations by-hand would simply take too long. On the other hand, the time
spent to develop a stable architecture clearly impacted the number and complexity of
selection algorithms that were produced. We view this tradeoff as appropriate since
it will allow future research to focus on the process of obfuscation rather than the

tool that performs the task.

The six subcircuit selection algorithms we produced yielded some surprising
results, and they gave us new insights into the heretofore untested process of subcir-
cuit selection and replacement. The RandomTwoGates algorithm alone provided two
valuable results. First, it demonstrates that the gates of a subcircuit need not be
connected to be selected. Additionally, RandomTwoGates also demonstrates how a

circuit library (CXL) can provide replacement subcircuits that introduce new control

67

flows in the circuit. These results mean that completely disparate portions of a circuit
can be intertwined, both from a black-box (functional) and a white-box (structural)

perspective.

All six of the algorithms revealed that circuit size always increases when only
one or two gates are selected for replacement. For single-gate subcircuits, all re-
placements have at least two gates. For a two-gate subcircuit, if its function is not
semantically equivalent to a basic gate (AND, NAND, OR, NOR, XOR, or XNOR),
then all replacement circuits in the circuit library will be, on average, larger than two
gates. Unless and until we devise algorithms that select three or more gates can we
expect to reduce circuit size. The ability to either increase or decrease circuit size
is how the process of subcircuit selection and replacement will be able to produce a

truly random circuit from a particular circuit family.

Finally, the three “smart” algorithms, especially, LargestLevelTwoGates, show
how circuit growth can be controlled and predicted, even when the selection algorithm

produces ever-increasing circuit size.

5.2 Future work

As alluded to above, we see 3-gate selection algorithms as the most important
next step in devising an intent protection framework. Omne approach is to extend
RandomTwoGates to select a third gate at random. This may be the easiest to do, but
our insight is that it will provide results which will guide the development of other
algorithms. In particular, as another approach, it may be advantageous during some
iteration of selection to chose only subcircuits for which there is a large population
of replacements in the circuit library.! Such a strategy will require the algorithm
to find subcircuits with a particular truth table. In graph theory, this is known as
subgraph isomorphism, and is an NP-complete problem. Depending on circuit size,

it may nonetheless be a feasible approach.

IThis assumes the library has a cache of metadata on its stores of circuit libraries which can be
quickly and easily searched.

68

There are at least two ways CORGI can be augmented which have nothing to do
with the algorithms directly. Currently, CORGI maintains no historical log of what
steps and in what order were performed to obfuscate a circuit. A future version of
CORGI with this capability would benefit the notion that an original circuit can be
recovered from an obfuscated version. In a sense, such a log file would be analogous
to a data encryption key for the white-box portion of the obfuscator. It remains to be
seen what advantages might accrue for the cost of this operation, but its a question

worth exploring.

Finally, CORGI is a solid proof-of-concept tool, but to make it better suited
to the research, two major augmentations need to occur. An obvious shortfall is the
need for a better user interface. Although not addressed in this text, the tool func-
tionality was accessed for this research entirely through test cases since the textual
user interface was too cumbersome for repeated experimentation. Ideally, a graphical
user interface will be developed so that rapid selection of input parameters and selec-
tion algorithm(s) will further keep the focus on experimentation rather than coding.
CORGI also needs a review of the efficiency of some of its processes (not the selection
algorithms themselves). Under the hood, there are several methods which employ re-
cursive search algorithms that are not very efficient. They become even less efficient
as circuit size increases. By instituting some optimization techniques, and limiting
calls to these methods only when necessary, CORGI will be more likely to achieve, at

worst, polynomial slowdown for large circuits.

69

Appendiz A. CORGI software
A.1 CORGI architecture

A.1.1 Functionality. CORGI is a Java application which employs a model-
view-controller (MVC) architecture. In Figure A.1 (page [71), the model is the
Circuit, which is composed of Gate objects. The controller is CircuitController.
The view is the UserCommandParser, which provides the user a text-based user in-

terface.

A.1.1.1 JGraphT. The Java graph library JGraphT, introduced in
Section 3.3.1.1, is the “engine under the hood” of CORGI. Recall, the ‘G’ in CORGI
stands for graphs, and JGraphT is what allows us to manipulate circuits as DAGs,
yet elide that fact from the user. Every circuit has an underlying graph (DAG), so

Circuit is really a fagade for a JGraphT DirectedGraph.

All circuit modifying behavior is contained in Circuit; however, the mechanism
of subcircuit selection and replacement is modularized as a separate class, ... (more

to come)

A.2 Non-selection algorithms

For the sake of brevity in the main text, the discussion of the non-selection al-
gorithms is presented here. The entire process of subcircuit selection and replacement
is given in Algorithm [7. The procedures for removeSubCircuit, fetchReplacement,
and insertReplacement are elided since they are purely “mechanical” in the sense
that they do not impact the selection process. Once a subcircuit Cy,;, is selected from
circuit C7, then these three methods will, respectively, remove Cy,;, get a replacement

circuit Cy, from CXL, then insert C,., in place of Cyyp.

Algorithm 8 (SelectRandomGate) and Algorithm [9/ (RejectGates) are helper
methods used by the six selection algorithms discussed in Chapter [V. SelectRandom-
Gate simply selects a single gate at random from among a set of gates. This capability

is needed since subcircuit selection relies on a sequence of random gate selections.

70

has a » __selects | «interface»
UserCommandParser i ImportStrategy
' |
1 1 l | selects
luses e | _ «interface»
Corgi L LT ExportStrategy
| | |
| |
1 |hasa» I i iselects '
CircuitControllerf===z==--' _ N «interface»
] S SelectionStrategy
1 \\\\\
~._invokes
operates on » I
1 \\\\\
0.* 0.1 T (obfuscates | BN
Gate Circuit | | SubCircuitReplacer
!
1 i
has|a » gets replacement from
I
|
1 i
. |
«enumerationy «instance» !
|

GateType |---———————————_____ > GateStrategyFactory -

1 -flyweights
1 *

has a» «interface»

GateStrategy

1
Figure A.1: The UML class diagram which shows the CORGI architecture.

71

Algorithm 7 performReplacement(Selection(CY))

C! « circuit C after 7 iterations of randomization

Geup — @ {subset of gates in C!: G4y C G(C))}

Gup < call Selection(C?) {the interface for the selection algorithms}
Csup < call RemoveSubCircuit(Ggyp)

Clep < call FetchReplacement(Cy,,) {this is the CXL interface}

Ci,, < call InsertReplacement(C.,)

return C],, {circuit C} after replacing Cyy, with Cyp}

Algorithm 8 SelectRandomGate(G)

Require: G is a non-empty set of gates
1: k <« uniform random number such that 0 < k < |G|
2: g « the k" gate in G
3: return g

RejectGates identifies the set of all gates which lie on all paths through a
particular gate and which are more than one hierarchical level removed from said
gate. RejectGates is the means by which performReplacement prevents cycles from
being introduced in C},; when replacing a subcircuit that contains more than one

gate.

72

Algorithm 9 RejectGates(gy, P)

Require: P true for predecessors of g, false for successors of g

W W W R NN N N NN DN N DK H = o s b e b e
PESSPISTESD IS0 ®Ia sl

Gyej — @ {set of rejected gates}
Gewrr — @ {set of gates being considered for rejection}
Gprev < D {set of gates already considered for rejection}
Grext <— D {set of gates to be considered for rejection}
Glagj — D {set of predecessors (successors) of a gate}
chrr — chrr + 9k
if P = true then

Gaqj < predecessors of gy,
else

Gagj < successors of gy,

. end if
: for all gates g, in Goq; do

if difference between hierarchy levels of g, and gxis > 1 then

chrr — chrr U {ga}
end if

. end for
: Gadj — J
. while G.,,, # @ do

Gnea}t —
for all gates GG, in Gy, do
if P == true then
Glaqj < predecessors of G
else
G aqj < successors of G
end if
Gne:pt — Gnezt U Gadj
end for
Gprev — Gprev U ch'rr
GCUT’T’ — @
chr‘r — chrr U Gne:ct

. end while
: return G,

tribute for all gates in the circuit. When there are multiple paths between a particular
pair of gates, and when one path is shorter than the other (in terms of number of
gates along the path), then one or more of the gates on the shorter path could legally

occupy any one of several levels in the hierarchy. We choose to assign gates to the

EstablishGateHierarchy is a circuit function that sets the hierarchy at-

73

lowest possible level that adheres to this convention: ewvery gate in the circuit will

always occupy a level that is lower (smaller) than the level of any of its predecessors.

Algorithm 10 EstablishGateHierarchy()
: label all gates as /£y
: U «— 0 {initialize global maximum level}
. 1, « 0 {initialize local (output) maximum level}
: for all circuit output gates g, do
(1, « call SetGateHierarchies(g,u,0,0)
EG — BEAX(EL,60>
end for

None of the so-called level-based selection algorithms would function properly
without EstablishGateHierarchy. EstablishGateHierarchy, in turn, relies upon
the recursive function SetGateHierarchies (described in Algorithm [11). The way
it works is to perform a DFS beginning at each circuit output, explore that output’s
predecessor tree (in the underlying DAG), and set the the hierarchy attribute for all
gates along the way. Some pruning is performed, but there will invariably be gates
that are visited at least twice, which makes EstablishGateHierarchy inefficient.
Since so much of CORGI relies on gates having a correct hierarchy attribute, future

versions of CORGI will benefit greatly from optimizing EstablishGateHierarchy.

Algorithm 11 SetGateHierarchies(g;, (1, ()
1: for all predecessor gates g; of gate g; do
3 (g;) — L(g;) +1
4: l¢ « call SetGateHierarchies(g;, ¢ + 1, (¢)
5
6
7

end if
return MAX(¢, (q)
end for

A.3 Selection algorithm behavior

Figures A.2, [A.3, and /A.4 give insight into the behavior of the six selection

algorithms.

74

Algorithm | Hyoe Havg Hpmin Ho
R1G 291 183.7 117 61.5
OL2G 103 97.7 90 4.8
R2G 119 89.9 75 15.6
FL2G 78 69.6 62 5.1
RL2G 87 65.6 46 14.0
LL2G 46 35.2 31 4.2

(a)

Algorithm | Wiae Wang Winin Wo
R1G 9 6.3 4 1.5
OL2G 5 4.4 4 0.5
R2G 7 5.3 4 1.1
FL2G 6 5.4 5 0.5
RL2G 8 6.8 5 1.2
LL2G 20 14.8 12 2.4
(b)
Algorithm | Hgpg/Wany Growth(%)
R1G 29.2 90.4
OL2G 22.2 474
R2G 17.0 43.5
FL2G 12.9 33.3
RL2G 9.6 31.3
LL2G 2.4 16.1

(c)

Figure A.2: Experimental results from performing ten trials of 200 iterations each
using all six selection algorithms, with ISCAS circuit C17 as the target C. To pro-
vide a common mode of comparison, all three tables are sorted in decreasing order
of Hyyg.

(a) The number of hierarchical levels in C" (maximum, average, minimum, and stan-
dard deviation).

(b) The number of gates in the widest hierarchical level of C’ (maximum, average,
minimum, and standard deviation).

(c) Height-to-width ratio and rate at which number of hierarchy levels increase per
iteration.

75

300

250

200

150

100

a0

—a— Hmax
——Havg

—t— Hmin

W

R1G

OL2G

Figure A.3:

R2G FL2G RL2G LL2G

Chart of data from Figure A.2(a).

76

20

18

16

14

12

10

—m—max
——avg

——min

]
N
\\//———//—/

R1G OL2G R2G FL2G RL2G LL2G

Figure A.4: Chart of data from Figure A.2(b).

7

A.4 Selection algorithm results

A.4.1 C17 with all algorithms. Figures A.5, /A.6, and [A.7 display examples
of the results achieved when each of the six algorithms are applied to a simple ISCAS
benchmark circuit, C17. In each case, the algorithm ran for 200 iterations. The
images are DAGs which represent the various circuits. While they are not strictly
circuits, they demonstrate the behavior of each algorithm. All images are drawn to

relative scale for ease of comparison.t

A.4.2 (C880 with OutputLevelTwoGates. Figures/A.8 /A.9, and|A.10 shows
how circuit C880 changes over time when randomized using the OutputLevelTwoGates
selection algorithm. Compare Figure A.8 to|[Figure A.5(c). Note that C880, which has
26 outputs, grows in height much more slowly than does C17, which has 2 outputs,

when OutputLevelTwoGates is applied for 200 iterations.

"When viewing this document electronically in PDF format, the circuit details can be seen by
zooming in to at least 1600% magnification.

78

H
(a)

Figure A.5: Comparison of original circuit (ISCAS C17) to sample results of R1G
and OL2G algorithms (200 iterations; circuits represented as DAGs).

(a) C'= ISCAS benchmark circuit C17 (height = 3 levels, width = 3 gates).

(b) C" after applying RandomSingleGate to C (height = 189 levels, width = 7
gates).

(c) C" after applying OutputLevelTwoGates to C' (height = 93 levels, width = 4
gates).

79

e TA
(P o
SEF TS

#
(a) (b)

Figure A.6: Comparison of original circuit (ISCAS C17) to sample results of R2G
and FL2G algorithms (200 iterations; circuits represented as DAGs).

(a) C' = ISCAS benchmark circuit C17 (height = 3 levels, width = 3 gates).

(b) C" after applying RandomTwoGates to C' (height = 93 levels, width = 6 gates).

(c) C" after applying FixedLevelTwoGates to C (height = 67 levels, width = 6
gates).

80

b
(a)

Figure A.7: Comparison of original circuit (ISCAS C17) to sample results of RL2G
and LL2G algorithms (200 iterations; circuits represented as DAGs).

(a) C' = ISCAS benchmark circuit C17 (height = 3 levels, width = 3 gates).

(b) C" after applying RandomLevelTwoGates to C' (height = 61 levels, width = 8
gates).

(c) C" after applying LargestLevelTwoGates to C' (height = 32 levels, width = 15
gates).

Figure A.8: " after applying 200 iterations of OutputLevelTwoGates to ISCAS
benchmark circuit C880 (height= 42 levels, width= 38 gates).

81

R3E=

Figure A.9: " after applying 400 iterations of OutputLevelTwoGates to ISCAS
benchmark circuit C880 (height= 60 levels, width= 31 gates).

82

T ST
L o e il
Al e RimSass Sase SRR
Figure A.10: C" after applying an additional 800 iterations of

OutputLevelTwoGates to the circuit €’ in [Figure A.9 (height= 098 levels,
width= 33 gates).

83

10.

11.

12.

13.

14.

Bibliography

Barak, Boaz, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil Vadhan, and Ke Yang. “On the (Im)possibility of obfuscating programs”.
FElectronic Colloquium on Computational Complextiy, 8(57):1-41, 2001.

“Benchmark circuits”. Internet: http://www.fm.vslib.cz/~kes/asic/iscas/,
Jan 2007.

Collberg, Christian, Clark Thomborson, and Douglas Low. A Tazonomy of Obfus-
cating Transformations. Technical Report 148, University of Auckland, Jul 1997.
URL http://www.cs.arizona.edu/~collberg/Research/Publications/.

Edwards, Stephen A. “Making cyclic circuits acyclic”. DAC ’03: Proceedings of
the 40th conference on Design automation, 159-162. ACM, New York, NY, USA,
2003. ISBN 1-58113-688-9.

Garey, M. R. and D. S. Johnson. Computers and Intractability : A Guide to the
Theory of NP-Completeness. W. H. Freeman, January 1979. ISBN 0-716-71045-5.

Goldwasser, Shafi and Guy N. Rothblum. “On Best-Possible Obfuscation”. /th
Theory of Cryptography Conference, volume 4392 of Lecture Notes in Computer
Science, 194-213. Springer, 21-24 February 2007. ISBN 3-540-70935-5.

Gross, Jonathan L. and Jay Yellen. Graph Theory and its Applications. Chapman
& Hall/CRC, 2 edition, 2006. ISBN 1-58488-505-X.

Hansen, Mark C., Hakan Yalcin, and John P. Hayes. “Unveiling the ISCAS-85
Benchmarks: A Case Study in Reverse Engineering”. IEEE Des. Test, 16(3):72—
80, 1999. ISSN 0740-7475.

Huth, Michael and Mark Ryan. Logic in computer science: Modelling and Rea-
soning about Systems. Cambridge University Press, 2004.

James, Moses C. Obfuscation Framework Based on Functionally Equivalent Com-
binatorial Logic Families. Master’s thesis, Air Force Institute of Technology,
WPAFB, OH, March 2008.

Kukis, Mark and Katherine Arms. “Bush to China: Return Plane, Crew”.
Internet: http://www.military.com/Content/MoreContentl?file=standoff,
April 2001.

McDonald, Jeffrey T. Enhanced Security for Mobile Agent Systems. Ph.D. thesis,
Florida State University, 2006.

Mish, Frederick C. (editor). Merriam-Webster’s collegiate dictionary. Merriam-
Webster, Incorporated, Springfield, MA, 10 edition, 2001. ISBN 0-87779-710-2.

Naveh, Barak. “JGraphT”. Internet: http://jgrapht.sourceforge.net/, Jan-
uary 2008.

84

http://www.fm.vslib.cz/~kes/asic/iscas/�
http://www.cs.arizona.edu/~collberg/Research/Publications/�
http://www.military.com/Content/MoreContent1?file=standoff�
http://jgrapht.sourceforge.net/�

15.
16.

17.
18.

19.

“PreEmptive Solutions”. Internet: http://www.preemptive.com/, Jan 2008.

“Semantic Designs, Inc.” Internet:
http://www.semdesigns.com/Products/0Obfuscators/, Jan 2008.

“Smardec”. Internet: http://www.smardec.com/products.html, Jan 2008.

Varnovsky, Nikolay P. and Vladimir A. Zakharov. “On the Possibility of Provably
Secure Obfuscating Programs.” Manfred Broy and Alexandre V. Zamulin (edi-
tors), Ershov Memorial Conference, volume 2890 of Lecture Notes in Computer
Science, 91-102. Springer, 2003. ISBN 3-540-20813-5.

“Wiktionary”. Internet: http://en.wiktionary.org/, Oct 2007.

85

http://www.preemptive.com/�
http://www.semdesigns.com/Products/Obfuscators/�
http://www.smardec.com/products.html�
http://en.wiktionary.org/�

Vita
Major Kenneth E. Norman graduated from Fayette County High School in
Fayetteville, Georgia. He entered undergraduate studies at the Georgia Institute of
Technology in Atlanta, Georgia where he graduated with a Bachelor degree in Elec-
trical Engineering in 1992. He was commissioned through Officer Training School in
1993. In 2002, he earned his first Masters degree in Engineering Management at the
Florida Institute of Technology.

Major Norman was first assigned to H(Q Standard Systems Group, Maxwell
AFB, Alabama in July 1993 as officer in charge of software development. In Octo-
ber 1996, he was assigned to the National Air Intelligence Center, Wright-Patterson
AFB, Ohio where he served as an intelligence analyst. His third assignment began in
October 1999 when he was selected to stand up a new joint interoperability program
office at the US Army’s Communications-Electronics Command, Fort Monmouth,
New Jersey. Next, he became an assignment officer for the developmental engineer
career field at HQ Air Force Personnel Center, Randolph AFB, Texas in July 2002.
Maj Norman was next assigned to the National Reconnaissance Office in Chantilly,
Virginia in August 2004 as a systems engineer. While there, he was selected for in-
residence Intermediate Developmental Education, which precipitated his assignment
to attend the Air Force Institute of Technology in August 2006. Upon graduation,
he will remain at Wright-Patterson AFB for his assignment to Air Force Research

Laboratory.

Permanent address: Air Force Institute of Technology
2950 Hobson Way
Wright-Patterson AFB, OH 45433-7765

86

Index

The index is conceptual and does not designate every occurrence of a key-
word. Page numbers in bold represent concept definition or introduction.

acyclic graph, 17
black-box obfuscation, 8

circuit class, 13
CORGI, 20
CXL, 20

digraph, see directed graph
directed acyclic graph, 17
directed graph, 15

graph, 15
multi-graph, 17

Random Program Model, 8
RPM, see Random Program Model

subcircuit replacement, 18

subcircuit selection, 18

VBB, see virtual black box
virtual black box, 4

white-box obfuscation, 8

Index-1

REPORT DOCUMENTATION PAGE OM"—E‘{,'\’,’O_‘";’;@‘;V_%’J%

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)|2. REPORT TYPE 3. DATES COVERED (From — To)
27-03-2008 Master’s Thesis Sep 2006-Mar 2008
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER
Algorithms for White-box Obfuscation Using
Randomized Subcircuit Selection and Replacement

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

08-183

5e. TASK NUMBER
Norman, Kenneth E., Maj, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

Air Force Institute of Technology

Graduate School of Engineering and Management (AFIT/EN)

2950 Hobson Way AFIT/GCS/ENG/08-17

WPAFB OH 45433-7765

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

Air Force Office of Scientific Research

801 North Randolph Street, Rm 732
Arlington VA 22203-1977
703-696-9544 (DSN: 426)

11. SPONSOR/MONITOR’'S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approval for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Software protection remains an active research area with the goal of preventing adversarial software exploitation such as reverse engineering, tampering,
and piracy. Heuristic obfuscation techniques lack strong theoretical underpinnings while current theoretical research highlights the impossibility of creating
general, efficient, and information theoretically secure obfuscators.

In this research, we consider a bridge between these two worlds by examining obfuscators based on the Random Program Model (RPM). Such a model
envisions the use of program encryption techniques which change the black-box (semantic) and white-box (structural) representations of underlying programs.
In this thesis we explore the possibilities for white-box transformation. Under an RPM formulation, if an adversary cannot distinguish an original program
from either its obfuscated version (whose black-box behavior has been strategically altered) or a randomly generated program of comparable size, then the
white-box intent of the original program has been sufficiently protected. One proposed method of creating such random indistinguishability is by choosing (at
random) a program from a size-bounded set of all semantically equivalent possibilities.

Since full enumeration of reasonably sized programs is not possible, in this work we focus on obfuscators which introduce random white-box structural
variation based on iterative selection and replacement. We design and develop an obfuscation framework for programmatic logic expressed as combinatorial
Boolean circuits and compare six unique approaches for sub-circuit selection. We analyze the relative behavior of random and guided-random sub-circuit
selection algorithms while showing their utility in producing random white-box structural variation.

15. SUBJECT TERMS

software tools, software engineering, computer programs, cryptography, obscuration, software obfuscation, randomization,
pseudo random sequences, random functions

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF | 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
a. REPORT | b. ABSTRACT|c. THIS PAGE| ABSTRACT OFces | Lt Col J. Todd McDonald
19b. TELEPHONE NUMBER (include area code)
U U U uu 99 937255 3636 x4639, jmedonal@afit.edu

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

